
ATTRIBUTE-BASED ACCESS AND COMMUNICATION CONTROL MODELS FOR

CLOUD AND CLOUD-ENABLED INTERNET OF THINGS

by

SMRITI BHATT, M.S.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

COMMITTEE MEMBERS:
Ravi Sandhu, Ph.D., Chair
Murtuza Jadliwala, Ph.D.

Palden Lama, Ph.D.
Gregory White, Ph.D.
Rohit Valecha, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
August 2018

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10928465

10928465

2018

Copyright 2018 Smriti Bhatt
All rights reserved.

DEDICATION

I would like to dedicate this dissertation to my mom Mrs. Sarita Bhatt, my dad Mr. Yagya Raj
Bhatt, and my brother Mr. Paras Bhatt for their tremendous love and support. I would also like to
dedicate it to Mr. Pankaj Chhetri, my beloved, who encouraged me to pursue my Ph.D. in the first
place and has been patiently supporting and motivating me throughout my journey.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Ravi Sandhu for his exceptional

guidance and continuous support throughout my Ph.D. He has always encouraged me to think

critically and shape my ideas in the best way possible. He has motivated me and inspired me to

give my best in research as well as in life. I am and will always be thankful to him for his wisdom,

knowledge, and experience that he endowed to me during my doctoral studies, which have helped

me to evolve as a focused researcher and will help me in my professional growth and career.

I would like to thank Dr. Gregory White, Dr. Palden Lama, Dr. Murtuza Jadliwala, and Dr.

Rohit Valecha for their time, knowledge, and valuable insights in organizing this dissertation.

I would also like to thank Mr. Farhan Patwa for his knowledge, support, and motivation

throughout my research journey at UTSA.

I would like to acknowledge the faculty members of the Computer Science department for their

wisdom and support. I would like to thank the staff members Suzanne Tanaka, Susan Allen, and

others from the ICS and the CS department for their tremendous kindness, help, and support. I am

thankful to all my friends, family members, and fellows at UTSA and beyond UTSA for providing

me a strong intellectual and personal support system during my doctoral studies.

This Masters Thesis/Recital Document or Doctoral Dissertation was produced in accordance
with guidelines which permit the inclusion as part of the Masters Thesis/Recital Document or Doc-
toral Dissertation the text of an original paper, or papers, submitted for publication. The Masters
Thesis/Recital Document or Doctoral Dissertation must still conform to all other requirements
explained in the Guide for the Preparation of a Masters Thesis/Recital Document or Doctoral Dis-
sertation at The University of Texas at San Antonio. It must include a comprehensive abstract, a
full introduction and literature review, and a final overall conclusion. Additional material (proce-
dural and design data as well as descriptions of equipment) must be provided in sufficient detail to
allow a clear and precise judgment to be made of the importance and originality of the research
reported.

iv

It is acceptable for this Masters Thesis/Recital Document or Doctoral Dissertation to include
as chapters authentic copies of papers already published, provided these meet type size, margin,
and legibility requirements. In such cases, connecting texts, which provide logical bridges between
different manuscripts, are mandatory. Where the student is not the sole author of a manuscript, the
student is required to make an explicit statement in the introductory material to that manuscript
describing the students contribution to the work and acknowledging the contribution of the other
author(s). The signatures of the Supervising Committee which precede all other material in the
Masters Thesis/Recital Document or Doctoral Dissertation attest to the accuracy of this statement.

August 2018

v

ATTRIBUTE-BASED ACCESS AND COMMUNICATION CONTROL MODELS FOR

CLOUD AND CLOUD-ENABLED INTERNET OF THINGS

Smriti Bhatt, Ph.D.
The University of Texas at San Antonio, 2018

Supervising Professor: Ravi Sandhu, Ph.D.

The essence of Attribute-Based models lies in their nature of employing attributes of various

entities for controlling different aspects in a system, as defined by customized policies based on

the model’s objectives and application domain. In Attribute-Based Access Control (ABAC), a sub-

ject’s (e.g., a user’s) access to different objects (e.g., files, databases) or to subjects (e.g., other

users in Online Social Networks) is secured based on the attributes of subjects and objects. ABAC

controls access to data and information stored in a system by abstracting them in the form of pro-

tected objects or resources. Due to its object focused approach, ABAC is insufficient to control

communications occurring in the form of streaming data and information sharing among differ-

ent system components. There is some literature on controlling communications using ABAC;

however, there is lack of focused treatment of Attribute-Based Communication Control (ABCC).

In today’s world, two pervasive application domains are Cloud Computing and the Cloud-

Enabled Internet of Things (CE-IoT). In these rapidly evolving domains, security and privacy of

data and information at rest and in motion is at considerable risk at all times from unauthorized

actors and malicious attackers. It is crucial to appropriately address security and privacy concerns

in these two emerging domains by conducting fundamental research on specialized ABAC and

ABCC models for Cloud and CE-IoT, which is currently lacking in the academic literature.

This dissertation investigates, develops, and demonstrates ABAC and ABCC models in four

different contexts concerning Cloud Computing and CE-IoT. First, it develops formal ABAC

models with user attributes, group attributes, and group and attribute hierarchies, viz. User-

Attribute Enhanced OSAC (UAE-OSAC) model for OpenStack, and restricted Hierarchical Group

and Attribute-Based Access Control (rHGABAC) model. It demonstrates enforcement of these

vi

models utilizing unified attribute-based access control tool, the Policy Machine (PM), developed

by National Institute of Standards and Technology (NIST), augmented with the Authorization En-

gine (AE) developed in this research.

Second, it investigates a real-world CE-IoT architecture, the AWS IoT, recently introduced by

Amazon Web Services (AWS). It then develops an abstract access control model for AWS IoT

known as AWS-IoTAC, based on the earlier published AWS Access Control (AWSAC) model. In

contrast to AWS’s policy-based approach, this dissertation identifies the need for an attribute-based

approach for fine-grained authorizations in IoT and proposes ABAC enhancements to the AWS-

IoTAC model. A Smart Home use case is implemented in AWS IoT to demonstrate the model and

proposed ABAC enhancements.

Third, it enhances the Access Control Oriented (ACO) architecture for IoT motivated by a

Wearable IoT (WIoT) use case, called the EACO architecture. It then develops an Access Con-

trol (AC) framework to comprehensively capture different types of accesses and communications

within the EACO architecture for CE-IoT.

Fourth, this dissertation introduces a novel concept of Attribute-Based Communication Control

(ABCC) and develops a general conceptual ABCC model. It then proposes a formal ABCC model

to control data flow and enforce privacy policies between the edge IoT network and the Cloud in

the context of CE-IoT. It demonstrates a real-world realization of this model using a WIoT use case

and a proof-of-concept implementation employing the AWS IoT and its edge computing service.

vii

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vi

List of Tables . xi

List of Figures . xii

Chapter 1: Introduction . 1

1.1 Motivation . 2

1.2 Problem Statement . 4

1.2.1 Thesis Statement . 4

1.3 Scope and Assumption . 5

1.4 Summary of Contributions . 5

1.5 Organization of the Dissertation . 6

Chapter 2: Background . 8

2.1 Attribute-Based Access Control (ABAC) . 8

2.1.1 HGABAC Model . 11

2.2 OpenStack . 15

2.2.1 OpenStack Access Control (OSAC) Model 17

2.3 The Policy Machine . 18

2.4 AWS Access Control (AWSAC) Model . 23

2.5 ACO Architecture . 25

Chapter 3: ABAC Models and Enforcement for Cloud IaaS Utilizing the Policy Machine 29

3.1 User-Attribute Enhanced OSAC (UAE-OSAC) Model 29

3.1.1 UAE-OSAC: Motivation . 30

viii

3.1.2 UAE-OSAC: Model and Definitions . 31

3.1.3 Enforcement Utilizing the Policy Machine and Authorization Engine . . . 35

3.2 Restricted HGABAC (rHGABAC) Model . 46

3.2.1 rHGABAC: Motivation . 47

3.2.2 rHGABAC: Model and Definitions . 49

3.2.3 Enforcement Utilizing the Policy Machine and Authorization Engine . . . 55

3.3 Related Work . 66

Chapter 4: ABAC for AWS Internet of Things . 68

4.1 AWS IoT Access Control (AWS-IoTAC) Model 68

4.1.1 AWS-IoTAC: Motivation . 69

4.1.2 AWS-IoTAC: Model and Definitions . 71

4.1.3 AWS-IoTAC Mapping in ACO Architecture 75

4.2 A Smart Home Use Case in AWS IoT . 76

4.2.1 Use Case Setup and Configuration . 76

4.2.2 Use Case Scenarios . 78

4.3 ABAC Enhancements to the AWS-IoTAC Model 80

4.3.1 Attributes in AWS IoT . 81

4.3.2 ABAC Enhancements for AWS-IoTAC 82

4.4 Related Work . 83

Chapter 5: Enhanced ACO Architecture for Cloud-Enabled Internet of Things (CE-IoT) 85

5.1 Internet of Things – Devices and Application Domains 85

5.1.1 A General Classification of IoT Devices 87

5.1.2 IoT Application Domains . 90

5.2 Wearable Internet of Things (WIoT) . 91

5.2.1 WIoT Devices and Application Domains 91

5.3 Enhanced ACO (EACO) Architecture . 94

ix

5.4 Access Control (AC) Framework for EACO . 95

5.4.1 Access Control Models . 99

5.5 Remote Health and Fitness Monitoring Use Case 101

5.5.1 Proposed Enforcement in AWS IoT . 103

5.6 Objectives of AC Framework . 104

Chapter 6: Attribute-Based Communication Control for CE-IoT 106

6.1 Attribute-Based Communication Control (ABCC) 107

6.1.1 A Conceptual Model of ABCC . 108

6.1.2 ABAC vs. ABCC . 110

6.2 ABCC for Edge and Cloud Communication (ABCC-EC) 112

6.2.1 ABCC-EC: Motivation . 113

6.2.2 ABCC-EC: Model and Definitions . 116

6.2.3 Use Case . 123

6.2.4 Implementation . 126

6.2.5 Performance Evaluation . 132

Chapter 7: Conclusion and Future Work . 135

7.1 Summary . 135

7.2 Future Work . 136

Bibliography . 138

Vita

x

LIST OF TABLES

Table 2.1 An Alternate Formalization for HGABAC Model [58] 14

Table 3.1 Simplified OSAC Model and its Core and Derived Components (Adapted

from [105]) . 33

Table 3.2 UAE-OSAC Model and its Components 34

Table 3.3 rHGABAC Model with single-value EAP 51

Table 3.4 rHGABAC with Attribute Hierarchy (AH) as single-value EAP 54

Table 3.5 Policy for Read Operation with Group Hierarchy 61

Table 3.6 Policy for Read Operation with Group and Attribute Hierarchy 63

Table 3.7 Average Policy Evaluation Time for ABAC Policies 65

Table 4.1 AWSAC Model Components [115] . 72

Table 4.2 AWS-IoTAC Model – Additional Components and Relations 73

Table 6.1 ABCC-EC Model for ENoT and Cloud Communication 119

Table 6.2 Communication Control Policy Language (CCPL) 120

Table 6.3 WIoT Use Case in the ABCC-EC Model 125

xi

LIST OF FIGURES

Figure 1.1 Overview of Contributions . 5

Figure 2.1 A Simple Conceptual ABAC Model (Adapted from [67]) 9

Figure 2.2 A Conceptual HGABAC Model [58] . 12

Figure 2.3 An Example of User Group Hierarchy (Adapted from [58]) 13

Figure 2.4 The OpenStack Architecture [24] . 16

Figure 2.5 OpenStack Access Control (OSAC) Model [105] 17

Figure 2.6 A Simplified Policy Element Diagram [52] 19

Figure 2.7 Policy Machine Architecture (Adapted from [51]) 20

Figure 2.8 Architectural Components of the PM (Adapted from [52]) 21

Figure 2.9 AWS Access Control within a Single Account [115] 23

Figure 2.10 ACO Architecture for IoT [35] . 25

Figure 3.1 Simplified OpenStack Access Control (OSAC) Model (Adapted from [105]) 32

Figure 3.2 User-Attribute Enhanced OSAC in Single Tenant 34

Figure 3.3 An ABAC Enforcement Architecture for OpenStack using PM 36

Figure 3.4 OpenStack Policy in PM . 37

Figure 3.5 OpenStack Authorization using AE and PM 39

Figure 3.6 A Role-Based Access Control Policy in PM 41

Figure 3.7 OpenStack Enforcement Results . 41

Figure 3.8 A User-Attribute Enhanced OSAC Policy in PM 42

Figure 3.9 OpenStack Enforcement Results . 43

Figure 3.10 Performance Evaluation for UAE-OSAC Model 45

Figure 3.11 The rHGABAC Model (Adapted from [58, 101]) 49

Figure 3.12 An Example of Attribute Hierarchy . 53

Figure 3.13 rHGABAC Model with Attribute Hierarchy 54

xii

Figure 3.14 Authorization Architecture Utilizing PM and AE 56

Figure 3.15 Example Authorization Request and Response 56

Figure 3.16 User and Object Groups with Associated Attributes 58

Figure 3.17 Group Hierarchy Policy Graph (Based on PM Graph Structure) 60

Figure 3.18 Sample Authorization Request and Response 61

Figure 3.19 Attribute Hierarchy . 62

Figure 3.20 Sample Authorization Request and Response 64

Figure 4.1 AWS IoT Access Control (AWS-IoTAC) Model within a Single Account . 71

Figure 4.2 AWS-IoTAC Entities Mapping to ACO Architecture for CE-IoT 76

Figure 4.3 Smart-Home Use Case Utilizing AWS IoT and Cloud Services 77

Figure 4.4 Smart-Home Use Case Scenario 1 . 78

Figure 4.5 Smart-Home Use Case Scenario 2 . 79

Figure 4.6 Lambda Function with ABAC Policy (Code Snippet) 80

Figure 4.7 Attributes in AWS IoT . 81

Figure 5.1 A General Classification of IoT Devices 87

Figure 5.2 IoT Application Domains . 90

Figure 5.3 WIoT Application Domains . 92

Figure 5.4 Enhanced ACO Architecture . 94

Figure 5.5 Interactions Between EACO Layers . 96

Figure 5.6 Access Control Framework based on Various Interactions in EACO Archi-

tecture . 97

Figure 5.7 Types of Access Control Models . 99

Figure 5.8 A Remote Health and Fitness Monitoring Use Case 101

Figure 5.9 A Sequential View of RHFM Use Case . 102

Figure 6.1 The Conceptual Attribute-Based Communication Control Model 108

Figure 6.2 Attribute-Based Access Control vs. Attribute-Based Communication Control110

xiii

Figure 6.3 Edge Network of Things and Cloud . 114

Figure 6.4 IoT Entities and Attributes in ABCC . 116

Figure 6.5 Attribute-Based Communication Control (ABCC-EC) Model for ENoT and

Cloud Communication . 118

Figure 6.6 A Wearable IoT Use case in CE-IoT Architecture 123

Figure 6.7 Implementation Architecture Utilizing AWS IoT and AWS Greengrass . . . 127

Figure 6.8 IoT Policy for Greengrass Core . 128

Figure 6.9 Sequence Diagram for ABCC-EC Policy Evaluation 130

Figure 6.10 Lambda Function with ABCC-EC Policy (Code Snippet) 131

Figure 6.11 Device Shadow Update Time . 132

Figure 6.12 Device Shadow Update Time with Attribute Caching 133

xiv

CHAPTER 1: INTRODUCTION

With the commercialization of the Internet in the 1990s and its continued advancements, various

technological ideas and developments, once considered possible only as science fiction, are shaping

our present and future today. One such emerging technology, supported by the ubiquitous Internet,

is the Internet of Things (IoT) where all the things around us are becoming smarter and changing

the way of our lives. Another pervasive technology today is Cloud Computing whose backbone is

also the Internet.

With an expected number of more than 20 billion connected devices by 2020 [10], there is

an inevitable need for a well-established architecture with virtually unlimited capabilities (e.g.,

storage, computation, analytics) to support IoT for its ongoing and future success in a sustainable

manner. The integration of Cloud and IoT has been recently suggested in the literature [33, 37,

44, 45, 79, 85, 86, 90, 91]. It has also been adopted in the industry [3, 7, 12] to support the IoT

architecture comprising of resource-constrained smart devices. Several terminologies are used

to refer this integration, such as Cloud-Supported IoT, Cloud-Assisted IoT, and Cloud-Enabled

IoT [35]. This dissertation uses the term Cloud-Enabled Internet of Things (CE-IoT).

The integration of these two broad domains raises many security and privacy concerns, since

a large attack surface, including both Cloud and IoT vulnerabilities, is exposed to the attackers.

At the same time, there is a vast amount of data and information continuously generated, stored,

and shared among different components in Cloud Computing and CE-IoT architectures, which is

at constant risk from malicious users and attackers.

In Cloud and CE-IoT, security and privacy of data and information both at rest and in motion

are crucial. For example, in IoT domains like Medical IoT (M-IoT) and Wearable IoT (WIoT),

devices are directly associated with the users. The user data and information (e.g., their personal

information and behavior patterns) gathered by these devices and shared with other components in

these domains are highly privacy-sensitive. This dissertation focuses on securing access and com-

munication between various components against unauthorized and malicious entities and attackers

1

in Cloud and CE-IoT. The technical approach of this dissertation towards addressing security and

privacy issues in these two emerging domains is to study, develop, and implement attribute-based

access and communication control models, specially designed for real-world platforms pertinent

to these domains.

1.1 Motivation

Access Control (AC) in general refers to control of access to a protected object (e.g., file, folder,

and database) by an authorized subject (e.g., user) in a system. The object here corresponds to

the data stored or a resource in a server, a system, or an application. While controlling access is

critical, it is also necessary to secure communications between different components or entities in a

system. In Cloud and CE-IoT, there are billions of users and devices, and the data and information

associated with them are highly sensitive and exposed to cybersecurity threats in both the physical

and virtual environment. These architectures comprise several entities and a network that enables

communication between these entities.

In a CE-IoT architecture, there are various types of communications and interactions between

different components. For example, in a wearable IoT scenario, there are wearable devices, associ-

ated with a specific user, at the edge network which are connected to a gateway that communicates

to their associated virtual objects (digital counterparts of the physical devices) [82] residing in the

Cloud computing platform. In such architectures, the data and information stored and exchanged

between several components are at considerable risk at all times and need to be secured with ap-

propriate access and communication control mechanisms. Due to the dynamic nature of Cloud and

CE-IoT, a flexible attribute-based approach is employed in this dissertation to develop access and

communication control models for Cloud and CE-IoT.

Attribute-Based Access Control (ABAC) [63,64,67] models provide flexible access control and

authorization mechanism based on the attributes (or properties) of entities, such as users, subjects,

and objects, in any application or system. The history of ABAC dates back to over two decade.

However, ABAC research in academia has gained momentum in recent years with the development

2

of several ABAC models with basic and additional capabilities [43,65,67,87,101,103,112]. ABAC

models have also been applied in administrative context for controlling administrator’s accesses

on model entities, such as users, objects, subjects, roles [36, 58, 80, 81]. While some research on

ABAC for Cloud and IoT has been conducted, there are so far no unified models which could be

widely applied in these domains in industry. Significant research on ABAC models customized and

designed for Cloud and CE-IoT platforms along with their demonstration in real-world scenarios

is necessary for their wide-adoption in the industry.

Moreover, ABAC focuses on securing access to static objects residing or stored in a machine.

However, the security of communication occurring between two components in a system, where

data and information are continuously flowing from one point to the other, is essential to defend

against malicious users and attackers. While some efforts [47,48] have been made to secure access

to communications procedures by modeling them as resources in the access control mechanism in

IoT. These efforts focus on a particular IoT protocol (e.g., MQTT), and thus cannot be generalized

to represent all types of communications in IoT. Besides, they do not utilize an attribute-based

approach in controlling the communications.

Unlike well-developed access control models, such as DAC [94], MAC [94], RBAC [54,92,93],

and ABAC [63, 64, 67]) for securing accesses to protected objects, there is a lack of emphasis on

formal communication control models for controlling communications and data flow between two

components in a system. Therefore, this dissertation proposes a novel concept of Attribute-Based

Communication Control (ABCC) for securing communications and data flow between different

entities. Since attribute-based communication control is a new concept, currently a basic under-

standing of ABCC models is lacking in the literature. Research on ABCC and its characteristics is

necessary to develop a conceptual ABCC model. This dissertation contributes towards formalizing

the ABCC model and defining its components and relationship with the ABAC model.

ABCC models can be employed to defend against security attacks (e.g., eavesdropping, Denial

of Service (DoS)) and enforce user-centric privacy policies in the CE-IoT architecture. For exam-

ple, in a WIoT scenario, an attacker could eavesdrop on the communication between the devices

3

at edge network and Cloud to gather user data and create a profile based on their information and

behavior to gain sensitive personal information. Another example is that of a user concerned about

privacy and does not want to send the user’s physiological and environment data (e.g., number of

steps, location) to the Cloud but is willing to send such data to the edge device where it will not be

persistently stored.

In distributed Cloud and IoT architectures, where a tremendous amount of data and information

is continuously being generated, stored, and shared among various entities, secure access control

and communication control models need to be studied and developed for ensuring security and

privacy of user data and information.

1.2 Problem Statement

While Attribute-Based Access Control (ABAC) has been applied to address access control and

authorization in Cloud and IoT, there is still a significant gap in theoretical ABAC models and their

application in real-world Cloud and CE-IoT platforms. On the other hand, there is fundamental

lack of knowledge and academic literature with respect to Attribute-Based Communication Control

(ABCC), a novel concept introduced in this dissertation to secure communication and data flow in

CE-IoT. A conceptual ABCC model, its characteristics, and its relationship with ABAC need to

be studied and defined for facilitating the development of concrete ABCC models for real-world

CE-IoT applications.

1.2.1 Thesis Statement

A flexible attribute-based approach can be utilized to address security and privacy issues in the dy-

namic and rapidly progressive Cloud Computing and CE-IoT architectures. A detailed exploration

of ABAC and ABCC, their formal models, and implementation in different contexts concerning

Cloud Computing and CE-IoT can ultimately strengthen the access, authorization, and communi-

cation framework in these domains.

4

Figure 1.1: Overview of Contributions

1.3 Scope and Assumption

The scope of this dissertation is to develop appropriate Attribute-Based Access Control (ABAC)

and Attribute-Based Communication Control (ABCC) models and demonstrate their applicability

in Cloud Computing and CE-IoT to enhance overall security architecture of these domains. This

dissertation is based on the following assumptions:

• Communications in an IoT architecture, comprising the flow of data and information be-

tween two entities or components, need to be controlled including user-driven policies.

• ABAC by itself is insufficient to secure continuously flowing data and information in dis-

tributed application domains. Hence, ABCC models are introduced.

• Edge Computing is necessary to support disruptively expanding IoT architecture.

1.4 Summary of Contributions

Figure 1.1 presents an overview of the contributions of this dissertation which can be divided into

four contexts related to Cloud Computing and CE-IoT. First, ABAC models for Cloud IaaS, i.e.,

OpenStack [100]), second, access control model and ABAC for Amazon Web Services (AWS)

5

IoT [3], third, enhancements to the recently published ACO architecture for IoT [35] and Access

Control Framework for CE-IoT, and fourth, ABCC for securing communications and data flow in

CE-IoT. The main contributions of this dissertation are as follows:

• It develops two ABAC models in the context of Cloud Computing IaaS, first extending the

OpenStack access control with user attributes, and second a more general ABAC model with

additional capabilities (e.g., groups and attribute hierarchies) that can be applied in Cloud

IaaS platforms. It demonstrates their applicability utilizing a novel enforcement architecture

including the Policy Machine [51,52], augmented the Authorization Engine (AE) developed

in this research.

• In the context of CE-IoT, it develops an access control model for AWS IoT, viz. AWS-

IoTAC, and proposes ABAC enhancements for it to enable fine-grained and flexible access

control mechanism in AWS IoT. A smart home use case is developed to demonstrate the

application of the model and depict the benefits of ABAC enhancements.

• Motivated by a Wearable IoT (WIoT) use case, it enhances the recently published Access

Control Oriented (ACO) architecture [35] and call it EACO. With respect to the EACO, it

develops an Access Control framework for grouping various types of interactions in CE-IoT.

• Lastly, it introduces a novel concept of Attribute-Based Communication Control (ABCC).

It builds a conceptual model for ABCC and explores its characteristics against the ABAC

model. It takes a first step in the development of a set of ABCC models for the CE-IoT

architecture by developing the ABCC-EC model for securing communications between the

edge network and the Cloud platform.

1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 provides a brief background on the

topics which form a foundation for this dissertation including ABAC, HGABAC, OpenStack and

its access control model, Policy Machine, and ACO architecture for IoT. Chapter 3 discusses two

6

different ABAC models which could be applied in Cloud IaaS platforms and demonstrates their

applicability and feasibility in real-world scenarios. Chapter 4 presents an access control model

for AWS IoT and discusses the proposed ABAC enhancements to AWS IoT. It also presents a

Smart Home use case to depict the benefits of ABAC in IoT. Chapter 5 presents the enhanced ACO

(EACO) architecture and develops an access control framework to categorize various interactions

(accesses and communications) in CE-IoT. Chapter 6 introduces the notion of ABCC to secure

different types of communications in the CE-IoT architecture. It establishes a conceptual ABCC

model and describes its characteristics and relationship with ABAC, and also develops a formal

ABCC model for edge to Cloud communications. Finally, Chapter 7 concludes the dissertation

with a brief overview of potential future work.

7

CHAPTER 2: BACKGROUND

This chapter discusses fundamental concepts and background essential to comprehend the research

contributions of this dissertation. It describes ABAC, a central concept in this dissertation, and re-

views the HGABAC model. It also discusses OpenStack and its access control model, the Policy

Machine and its architecture, AWS access control model, and the recently published ACO archi-

tecture for IoT. These topics are ordered based on their relevance to the following chapters.

2.1 Attribute-Based Access Control (ABAC)

Access control is a mechanism that determines who can do what and on which resources. It in-

cludes two parts: authentication which deals with the who part and authorization that identifies

what authenticated users can do on which resources. There have been several access control models

proposed and formalized in the literature. These models act as the fundamental security mecha-

nism in numerous applications and systems. Among these different access control models, only a

few have been successfully applied in real-world applications and systems.

Three most significant and widely known access control models are Discretionary Access

Control (DAC) [94], Mandatory Access Control (MAC) [94], and Role-Based Access Control

(RBAC) [54, 92, 93]. While each of them has their advantages, they also have weaknesses. In

DAC, owners of objects control access of users to the objects. It is simple and straightforward but

has inherent weaknesses, such as copying problem and trojan horses which can be easily exploited

to gain unauthorized access to sensitive information. Similarly, MAC provides a more strict ac-

cess control method by assigning security labels to users and object. It is designed for military

applications with the focus to maintain the confidentiality of the information. Whereas, RBAC is a

more flexible and administrative friendly access control model [43]. It determines accesses based

on roles assigned to the users and permissions associated with these roles on specific objects. It

is the most popular access control model in the industry. However, it also has some well-known

limitations such as role explosion and role-permission explosion [89].

8

Figure 2.1: A Simple Conceptual ABAC Model (Adapted from [67])

Motivated by the limitations of the traditional access control models, attribute-based access

control (ABAC) has recently received significant attention in the literature [43]. The basic idea

of attribute-based access control is to employ attributes (characteristics or properties) of different

entities to make access control decisions regarding a subject’s (e.g., user, process, etc.) access

on an object (e.g., file, printer, database, etc.) in a system. The access control decisions are

evaluated based on authorization policies specified by an administrator using a policy specification

language. ABAC authorization policies are a set of rules defined based on the attributes of subjects

and objects as well as other attributes, such as contextual attributes.

The concept of ABAC has been around for over two decades in the literature with attribute-

based access control models designed for specific applications [103,108] and Attribute-Based En-

cryption [56, 83] for securely sharing objects or data. However, recently academia and standards

bodies like National Institute of Standards and Technology (NIST) have gained interest in ABAC

and are considering it as the Next generation Access Control (NGAC) [53]. A unifying formal

ABAC model, known as ABACα, along with its features, components, and formal specifications is

presented by Jin et al. in [67]. It also depicts that ABAC can express the traditional access control

models (DAC, MAC, and RBAC) by suitably defining the attributes.

Figure 2.1 presents a simple conceptual ABAC model, adapted from [67]. The core compo-

9

nents of the model are Subjects (S), Objects(O), Subject attributes (SA), Object Attributes (OA), Op-

erations (OP), and an Authorization Function (Auth). The contextual or environmental attributes

(EA) also exists in the model space and can be utilized in the access control policy based on the

requirements. For example, an employee’s request to access office resources is granted only during

the daytime; thus here daytime is the environment attribute in the authorization policy.

The subjects represent individual users in a system. They are entities or processes created by

and executing on behalf of the users. The objects are protected data, information, and resources,

such as a database, file, a printer, etc. The subject attributes represent the properties of the subjects,

such as Name, Age, Title, etc., and object attributes represent the properties of the objects, such as

Type, Owner, etc. Typically these attributes are name-value pairs. As defined in [67], an attribute

is a function with a range of values that takes an entity (e.g., user, object) as the input and returns

a value from its range. The range of an attribute is a finite set of atomic values.

The attributes are of two types: atomic-valued which returns a single value for an attribute,

and set-valued which returns a set of values for an attribute. The operations could be simply read

and write. The authorization function evaluates the authorization policy and returns Allow or Deny

for an access request. The nature and concrete details of these components are implementation

specific and depend on the discretion of the system administrator. Jin et al. provide a detailed

formal definition of ABAC components along with a policy specification language in [67].

The ABAC models can be classified into two classes based on the type of authorization policy

specification techniques which are Logical-formula Authorization Policy (LAP) and Enumerated

Authorization Policy (EAP). In LAP, predicate logic and logical operators (e.g., AND, OR) are

used to define the ABAC authorization policy including attributes and their values. It provides the

flexibility to define complex authorization policies in a simple and easy manner. However, policies

in LAP are heterogeneous since there are no constraints on the size and structure of policy. Thus, it

difficult and cumbersome for a system administrator to manage, review and update logical formula

policies [42]. Whereas in EAP, the authorization policy is specified as enumerated tuples involving

subject attributes and object attributes. It is a set of one or more tuples where the structure of

10

policies is homogenous. Therefore, EAP provides administrative scalability to review and update

policies. EAP policies can be updated by adding or removing tuples. However, EAP has its

disadvantages, such as large policy size due to enumerations of each condition in the policy and

support for limited operators [42]. Biswas and Sandhu present a detailed comparison of LAP

and EAP in [42]. An instance of EAP-ABAC is the Policy Machine [51, 52] developed by NIST,

which has been utilized in the following chapter to present a unique enforcement architecture for

enforcing ABAC models.

This dissertation develops and formalizes ABAC models in different context of Cloud Com-

puting and CE-IoT. These models include the basic ABAC structure and features discussed here,

as well as introduce additional capabilities (components and relationships) based on the require-

ments of the specific domain. It discusses both LAP-ABAC and EAP-ABAC models based on the

context of the application. An instance of EAP-ABAC model, a restricted HGABAC (rHGABAC),

is developed and formally defined along with enforcement of the model in Chapter 3. Originally,

the HGABAC model has been developed and formalized as a LAP [58,101], which is discussed in

the next section.

2.1.1 HGABAC Model

In [101], Servos and Osborn introduced user and object groups with hierarchical relationship and

attributes in ABAC and proposed a formal Hierarchical Group and Attribute-Based Access Control

(HGABAC) model. In the process of developing an administrative model for HGABAC, named

GURAG, Gupta and Sandhu presented a conceptual model of HGABAC with an alternate formal-

ization for it based on ABACα [58].

Figure 2.2 shows the conceptual HGABAC model formalized in [58]. It consists of basic

ABAC components, such as users (U), subjects (S), objects (O), user attributes (UA), object

attributes (OA), and operations (OP). A user is an individual and represents actual humans inter-

acting with a system, whereas subjects are the representation of users in the virtual environment,

such as a process or a session running on behalf of the user who performs operations on an object

11

Figure 2.2: A Conceptual HGABAC Model [58]

in a system. Objects are data and information resources, such as files, databases, and applications.

Operations are actions (e.g., read, write) that can be performed on the objects by the subjects. User

attributes represent the properties of users and subjects, and object attributes represent the prop-

erties of the attributes. Subjects are created by users. Here, all attributes are considered to be set

valued, and thus each attribute can be assigned a subset of values from the range of an attribute,

represented as Range(att) [58].

User groups (UG) and object groups (OG) are a collection of users and objects respectively.

User groups are assigned a set of user attributes, and object groups have a set of object attributes

assigned to them. A user in a user group inherits attributes from that user group, and objects which

are members of a specific object group inherits attributes from that group. Furthermore, these

groups have partial order hierarchical relationship among them [58]. A group hierarchy is a partial

order relation written as �g where senior groups acquire all attribute values assigned to the groups

junior to them, along with their own directly assigned attribute values. It is especially beneficial

when there exist many users in a system having common characteristics. Therefore, instead of

assigning same attribute values to each user, we can group the users into specific groups and assign

appropriate attributes and their values to these groups. Similar is the case for objects where objects

having same properties and characteristics can be grouped into one object group.

Figure 2.3 shows a simple user group hierarchy example. There are three groups Computer

12

Figure 2.3: An Example of User Group Hierarchy (Adapted from [58])

Science Group, Graduate_Group, and Undergraduate_Group. Among these graduate and un-

dergraduate are senior groups and are represented higher up whereas computer science is a ju-

nior group and is one level below the senior groups. An attribute and its values are written as

att_name : {V al1, V al2, ..., V aln}. A directly assigned attribute-value is shown in bold font, and

an inherited attribute-value is shown as italicized in normal font in Figure 2.3. In this example,

the senior groups, Graduate_Group and Undergraduate_Group, inherit attribute department and

its value CS from junior group Computer Science Group and also have directly assigned attributes

skills and stud_Type.

The formal definitions of the model, as given in [58], are presented in Table 2.1. As discussed

earlier, U, S, O, OP, UG, OG, UA, and OA are finite sets of users, subjects, objects, operations,

user groups, object groups, user attributes, and object attributes respectively. For each attribute

(att), there is a finite range of attributes, represented as Range(att). User attribute functions are

represented as attu while atto represents the object attribute functions. A mapping of user to user

groups is given by directUg and mapping of objects to object groups is given by directOg. User

Group Hierarchy (UGH) represents a partial order relationship between user groups, written as

�ug. For example, ug1 �ug ug2 means that ug1 is a senior group and ug2 is a junior group in

the user group hierarchy. Object Group Hierarchy (OGH) represents a partial order relationship

between object groups, written as �og.

The derived functions of the model include effective attributes of user groups, users, object

groups, and objects, and effective attributes of the subjects. The effective attributes are derived

13

Table 2.1: An Alternate Formalization for HGABAC Model [58]
Basic Sets and Functions
– U, S, O, OP are finite set of users, subjects, objects and operations respectively
– UG, OG are finite set of user and object groups respectively
– UA, OA are finite set of user and object attribute functions respectively
– For each att in UA ∪OA, Range(att) is a finite set of atomic values
– For each attu in UA, attu : U ∪ UG→ 2Range(attu), mapping each user

and user group to a set of values in Range(attu)
– For each atto in OA, atto : O ∪OG→ 2Range(atto), mapping each object

and object group to a set of values in Range(atto)
– directUg : U→ 2UG, mapping each user to a set of user groups
– directOg : O→ 2OG, mapping each object to a set of object groups
– UGH ⊆ UG×UG, a partial order relation �ug on UG
– OGH ⊆ OG×OG, a partial order relation �og on OG

Effective Attributes (Derived Functions)
– For each attu in UA,
• effectiveUGattu : UG→ 2Range(attu), defined as

effectiveUGattu(ugi) = attu(ugi) ∪ (
⋃

∀g ∈ {ugj|ugi �ug ugj}
effectiveUGattu(g))

• effectiveattu : U→ 2Range(attu), defined as
effectiveattu(u) = attu(u) ∪ (

⋃
∀g ∈ directUg(u)

effectiveUGattu(g))

– For each atto in OA,
• effectiveOGatto : OG→ 2Range(atto), defined as

effectiveOGatto(ogi) = atto(ogi) ∪ (
⋃

∀g ∈ {ogj|ogi �og ogj}
effectiveOGatto(g))

• effectiveatto : O→ 2Range(atto), defined as
effectiveatto(o) = atto(o) ∪ (

⋃
∀g ∈ directOg(o)

effectiveOGattu(g))

Effective Attributes of Subjects (Assigned by Creator)
– SubUser : S→ U, mapping each subject to its creator user
– For each attu in UA, effectiveattu : S→ 2Range(attu), mapping of subject s to a set of values
for its effective attribute attu. It is required that : effectiveattu(s) ⊆ effectiveattu(SubUser(s))

Authorization Function
For each op ∈ OP, Authorizationop (s:S, o:O) is a propositional logic formula,
returning true or false and is defined using the following policy language:
• α ::= α ∧ α | α ∨ α | (α) | ¬α | ∃ x ∈ set.α | ∀ x ∈ set.α | set4 set |

atomic ∈ set | atomic /∈ set
• 4 ::= ⊂ | ⊆ | * | ∩ | ∪
• set ::= effectiveattui (s) | effectiveattoi (o) for attui ∈ UA, attoi ∈ OA
• atomic ::= value

Access Decision Function
A subject si ∈ S is allowed to perform an operation op ∈ OP on a given object
oj ∈ O if the effective attributes of the subject and object satisfy the policies
stated in Authorizationop(s : S, o : O). Formally, Authorizationop(si, oj) = True

14

based on the directly assigned attributes to entities (users and objects) and attribute inherited as a

result of many-to-many group hierarchy (UGH and OGH). For a user, the effective attribute values

of a user attribute attu is the union of directly assigned user attribute values and attribute values

inherited from all the user groups of which the user is a member. The effective attribute values of a

user group effectiveUGattu is the union of user attribute values directly assigned to the user group

in UG and the attribute values inherited from all the junior user groups. Similarly, the effective

attributes for objects and object groups are defined in Table 2.1.

The SubUser function maps a subject to the user who created this subject. The effective

attributes of subjects are derived based on their creators, which in this case are specific users.

Therefore, a subject’s effective attribute values are a subset of its user effective attribute values.

The authorization function Authorizationop(s, o) for a specific operation op in the model is defined

as a logical-formula based on the policy language. It determines if a subject s can perform operation

op on an object o based on the access decision function which utilizes the effective attribute values

of subject s and object o in evaluating the access decision (Allow/Deny) [58].

The conceptual HGABAC model discussed above utilizes the logical-formula authorization

policy and is a LAP-ABAC model. In Chapter 3, an enumerated authorization policy (EAP) ver-

sion of the HGABAC model, called restricted HGABAC (rHGABAC), is developed that incorpo-

rates and demonstrates the benefits of EAP-ABAC. The rHGABAC model is enforced utilizing

the Policy Machine (PM) and the Authorization Engine (AE), a proof-of-concept implementation

developed in this dissertation.

2.2 OpenStack

OpenStack is a widely used open source cloud computing platform. It provides a robust IaaS

platform for building public, private or hybrid clouds. It is a rapidly evolving application which

is developed and maintained by a vibrant community of developers from more than 200 world-

leading organizations. It is formally defined as follows in [24]:

“OpenStack software controls large pools of compute, storage, and networking resources through-

15

Figure 2.4: The OpenStack Architecture [24]

out a datacenter, managed through a dashboard or via the OpenStack API. OpenStack works with

popular enterprise and open source technologies making it ideal for heterogeneous infrastructure.”

Figure 2.4 depicts the OpenStack architecture. OpenStack consists of various services such

as compute (Nova) compute service, image (Glance) service, identity (Keystone), block storage

(Cinder), Dashboard (Horizon), object storage (Swift), and networking (Neutron). Horizon is the

web-based dashboard that allows users to access all the services through a GUI; however, there is

also a command line interface (CLI) for users to interface with each of the services.

Nova is a compute service and allows users to create virtual machines, and Swift provides data

storage via swift objects. Similarly, Cinder provides block storage attached to virtual machines

as a storage volume. Glance provides users with images (e.g., OS, software, configurations, etc.)

that are used in instantiating virtual machines. Neutron provides networking services to the users

allowing them to network virtual machines using virtual routers. Keystone is the identity service

which manages the overall security of OpenStack including authentication and authorization [24].

16

Figure 2.5: OpenStack Access Control (OSAC) Model [105]

2.2.1 OpenStack Access Control (OSAC) Model

Tang and Sandhu [105] developed an access control model for OpenStack, known as OSAC, based

on the OpenStack Identity API v3 and Havana release. Figure 2.5 presents the core OSAC model. It

consists of nine entities: users, groups, projects, domains, roles, services, object types, operations,

and tokens. Users are individuals authenticated to access cloud resources, groups are a set of users,

and projects are resource containers through which users get access to specific cloud resources

such as virtual machines (VMs), storage, etc. The Domain is a higher level concept that represents

a tenant of the cloud service provider (CSP). The projects in a domain represent the administrative

boundary of its users and groups. They allow tenants to segment their resources and to manage

their users’ scope of access to those resources [116].

Roles are global entities used to associate users with any of the projects inside a domain. It

specifies the access levels of users to services in specific projects in a given domain. Permissions

are assigned to role-project pairs and are used to specify access levels of users to services in specific

projects, with specific roles. Role-permission assignments are defined by a cloud administrator.

Object types are different types of resources in cloud services such as virtual machines (VMs),

17

images, swift-objects, etc. Operations are access methods on these object types owned by services

in the cloud. An object type and operation pair defines actions which can be performed by end

users on cloud services and resources. Each authenticated user receives a token from the identity

service Keystone, which represents the scope of resources that a user is allowed to access. A token

is equivalent to a subject and has information about the user, its roles in specific projects and its

associated domain [116].

OpenStack access control utilizes the role-based approach. It is an open source Cloud IaaS

platform that is widely being used to create different types of cloud architectures: Public Cloud,

Private Cloud, and Hybrid Cloud in industry and academia. With such broad application of Open-

Stack in the real-world, the customers have already started to realize the weaknesses of RBAC,

i.e., role explosion and role-permission explosion. Therefore, a flexible access control mechanism,

such as ABAC, needs to be explored for OpenStack to enhance its access control framework. At

the same time, it is a widely used platform, thus replacing RBAC completely in OpenStack is not

feasible. Chapter 3 presents a simplified version of the core OSAC model along with formal def-

initions. It then proposes an ABAC extension for OpenStack, the User-attribute Enhanced OSAC

(UAE-OSAC) model, while keeping its RBAC authorization framework intact. The UAE-OSAC

model is enforced in OpenStack using the Policy Machine (PM) and our proof-of-concept imple-

mentation, the Authorization Engine (AE).

2.3 The Policy Machine

The Policy Machine (PM) [51, 52] is a general-purpose attribute-based access control framework

developed by the National Institute of Standards and Technology (NIST). It is a reference imple-

mentation for the Next Generation Access Control (NGAC), an emerging ANSI/INCITS standard

being developed by NIST. PM is an open source application. The first version of PM/NGAC im-

plementation is known as Harmonia-1.5. However, recently a new version, Harmonia-1.6 has been

developed with an enhanced architecture (i.e., Object-Oriented Software Architecture) including

MySQL support [15]. As per NIST first public release of the PM, it is defined as follows [14].

18

Figure 2.6: A Simplified Policy Element Diagram [52]

“The Policy Machine is an access control mechanism that comprises: (1) Access control data

used to express access control policies and deliver capabilities of data services to perform opera-

tions on objects; (2) a set of administrative operations for configuring the access control; and (3) a

set of functions for enforcing policy on requests to execute operations on objects and for computing

access decisions to accommodate or reject those requests based on the current state of the access

control data.”

This dissertation uses the Harmonia 1.5 release, and the PM concepts and architectures dis-

cussed here are relevant to this release [51, 52]. The PM can express and enforce arbitrary, or-

ganization specific, attribute-based access control policies. It is a mechanism to define access

control policies in terms of a standardized and generic set of relations and functions that can be

reused. The primary objective of PM is to provide a unifying framework to support a wide range

of attribute-based policies or policy combinations.

The PM has eight core elements or entities: users, objects, user attributes, object attributes,

operations, processes, access rights and policy classes. The policy classes, user attributes, and

object attributes are containers for policies, users, and objects respectively. The PM has four types

of relations: assignment, association, prohibition and obligation, and two sets of functions:

access control decisions and policy enforcement. Assignment relation is used to define the re-

19

Figure 2.7: Policy Machine Architecture (Adapted from [51])

lationship between users, user attributes, objects and object attributes, and association relation is

used for making the association between user attributes and object attributes or objects through

some operations. These associations define access control policies. Prohibition and obligation re-

lations are used to enforce constraints and restrictions on user capabilities in specific access control

policies.

Through the assignment relation in the PM, there exists a containment property among PM

attributes. The containment property implies that if there exist any two elements x and y such that

x is assigned to (contained in) y by one or more assignment relations, then x acquires or gets all

the properties and capabilities of y in addition to its own directly conferred properties [52]. PM

supports hierarchical relations through the containment property. Based on the existing set of PM

elements and relations, different types of access control policies (e.g., DAC, MAC, RBAC) can be

specified and enforced utilizing the PM.

In PM, a policy element diagram represents a directed policy graph which comprises basic

policy elements and assignments among them. Figure 2.6 depicts a simplified policy element

diagram. It is an inverted graph with arrows pointing down. It shows assignments between different

type of policy elements [52]. In Figure 2.6, users and objects are assigned to user attributes and

object attributes respectively. User and object attributes are assigned to other user and object

attributes respectively. Finally, all the elements are assigned to a policy class. Similar policy

20

Figure 2.8: Architectural Components of the PM (Adapted from [52])

graphs are generated and discussed in depth while enforcing relevant use cases in the restricted

HGABAC (rHGABAC) model in Chapter 3.

The general PM architecture is shown in Figure 2.7. It comprises a PM server, PM clients, and

Resources repository. PM server includes a PM Database (Active Directory), a Policy Decision

Point (PDP), a Policy Administration Point (PAP) and an event processing module. The PM clients

are host systems where the policies are enforced. They encapsulate the application programming

interfaces (API) and PM-aware applications. In current PM implementation, the Policy Enforce-

ment Point (PEP) is implemented as a kernel simulator. The PM client or the user environment is

the context in which the user’s PM processes run. These processes are similar to subjects. A PM

client could be an operating system, an application (e.g., a database management system), a service

in a service-oriented architecture, or a virtualized environment. The resources are the repositories

for different types of objects such as files, records, directories, etc. [52].

Figure 2.8 shows the architectural components of the PM, from an alternate perspective. For

a general application to be PM compliant, the applications need to modified to incorporate and be

able to communicate to the PEP in the PM which talks to the PDP for access control decisions. A

PDP determines whether an access request made by PEP should be granted or denied as per the

21

policy defined in PAP. All the information regarding access control data and relations is stored in

a PM database, which is a policy information point (PIP).

Policy Machine supports a rich set of capabilities for defining customized access control poli-

cies. It allows to define deny or prohibition relations and apply constraints, and also allows com-

bining different access control policies specified in PM using the Admin tool. PM Admin tool is

a GUI based tool, used to define and administer access control policies in PM by creating policy

classes, users, user attributes, objects, object attributes, and setting operations sets and permissions

between user attributes and object attributes and objects. All this data, information, and relations

are stored in Active Directory (the PM Database) as in PM version 1.5. Users request access to

objects through PM clients which in turn communicate to the PM server for access control deci-

sions and enforce these decisions on host systems. PM follows an enumerated authorization policy

(EAP) mechanism to specify attribute-based access control policies.

One of the other known attribute-based frameworks for enforcing ABAC policies is eXtensible

Access Control Markup Language (XACML) [32]. It is an OASIS standard and has been used to

define ABAC policies in the academia and industry. It is an attribute-based access control policy

language for managing authorized access to resources. It provides an architecture with a standard

set of components, such as policy administration point (PAP), policy decision point (PDP), policy

information point (PIP), policy enforcement point (PEP), etc. for evaluating access control policies.

It follows a logical formula ABAC policy system where predicate logic is used to specify policy

rules. A formal role-centric attribute-based access control (RABAC) model has been proposed by

Jin et al. [69] where the authors utilized an XACML based enforcement technique for their model.

This dissertation utilizes the PM to develop an enforcement architecture for ABAC models.

The capabilities of the PM and the flexibility to specify and combine different types of access

control policies make it a suitable choice for utilizing it as an enforcement architecture. On the

downside of the PM, the applications using it should be aware of its structure and elements, and

this adds complexity. To simplify the process and ease of use of the PM with applications as

OpenStack, a proof-of-concept implementation of an authorization engine (AE) is developed in

22

Figure 2.9: AWS Access Control within a Single Account [115]

this dissertation to facilitate interaction between the PM and applications using it. This novel

enforcement architecture with PM and AE will be discussed and applied in Chapter 3.

2.4 AWS Access Control (AWSAC) Model

Amazon Web Services (AWS) is a public cloud computing platform provided by Amazon [1]. As

per [1], it is defined as follows:

“Amazon Web Services (AWS) is a secure cloud services platform, offering compute power,

database storage, content delivery and other functionality to help businesses scale and grow.”

AWS is a global platform available in 190 countries. It provides its millions of customers to

leverage its AWS cloud products and solutions to build sophisticated applications with increased

flexibility, scalability and reliability. A user or customer can use and access AWS cloud computing

services through AWS accounts; thus customers who own an account have access to cloud re-

sources. A user with AWS account can create other users and grant them access to cloud resources

inside this account and other accounts through federated identity and permissions. A user belongs

to a unique account.

An access control model for AWS cloud services was developed by Zhang et al. [115]. This

section briefly describes the AWS Access Control (AWSAC) model, which in turn forms a base

23

for the AWS IoT access control model developed in Chapter 4. The AWSAC model within a sin-

gle AWS account is shown in Figure 2.9. As defined in [115], AWSAC has seven components:

Accounts (A), Users (U), Groups (G), Roles (R), Services (S), Object Types (OT), and Op-

erations (OP). Accounts are basic resource containers in AWS, which allows customers to own

specific cloud resources, and serve as the basic unit of resource usage and billing. Users represent

individuals who can be authenticated by AWS and authorized to access cloud resources through

an account. A user who owns an account can create other users inside that account and can assign

them specific permissions on resources. Groups are a set of user groups. The user_group relation

specifies the user to group assignment. If a policy is attached to a group, it will apply to all the

users in that group, where users and groups belong to a single account.

“Roles” in AWS, unlike standard RBAC roles, are used for establishing trust relationships

between users and resources in different AWS accounts. Users can be assigned roles through

the AssumeRole action, and permissions assigned to these roles allows these users to gain access

to corresponding cloud resources. The user-role mapping is specified through virtual user_role

relation. The quotation marks are used for “roles” in Figure 2.9 to distinguish the AWS “roles”

from RBAC roles. In the context of AWS, roles signify “roles” for simplicity. Services refer to

AWS cloud services, such as compute, storage, networking, administration, database, etc. Object

Types represents a specific type of object in a particular cloud service, such as virtual machines in

the compute service EC2. Operations represent allowed operations on the object types based on

an access control policy attached to them or their owning services.

AWS utilizes a policy-based access control mechanism. An AWS Policy is a JSON file which

includes permissions defined on services and resources in the cloud. It comprises three main parts

(or tags) Effect, Action and Resources, and optional Conditions. A policy can be attached to a user,

a group, a role or a specific cloud resource. Virtual Permission Assignment is the process of

virtually assigning permissions to users, roles, and groups by attaching policies to these entities.

In cases where policy is attached to a resource, a specific Principal (an account, a user or a role)

needs to be specified in the policy. There could be multiple permissions defined in one policy, and

24

Figure 2.10: ACO Architecture for IoT [35]

multiple policies can be attached to one entity.

In Chapter 4, an abstract access control model for AWS IoT, known as AWS-IoTAC model, is

developed by extending this AWSAC model. The AWS IoT platform is an instance of a CE-IoT

architecture, more specifically a real-world CE-IoT platform provided by one of the largest Cloud

services provider, Amazon Web Service (AWS) [1]. The principal goal of developing this model is

to investigate and understand the authorization framework of a real-world CE-IoT platform by ex-

ploration of available documentation and hands-on-experiments. It is necessary to understand the

current state-of-art of security in CE-IoT architecture and find what is lacking or needs improve-

ment and propose appropriate solutions. Chapter 4 also discusses the need for an attribute-based

approach to enhance IoT authorizations with fine-grained policies and proposes ABAC enhance-

ment for the AWS-IoTAC model based on the realization of a Smart Home use case and its imple-

mentation in the AWS IoT platform.

2.5 ACO Architecture

Many layered IoT architectures, with variations in different layers of the architecture, have been

proposed in the literature [33,37,45,49,57,72,82,85,90,91]. A general IoT architecture comprises

three basic layers: an object layer, one or more middle layers, and an application layer [33,37,86,

110, 111]. Recently, an IoT architecture, consistent with the above architectures, was proposed by

25

Alshehri and Sandhu in [35]. The motivation of their architecture is to integrate Cloud computing

and its benefits in IoT and incorporate the concept of virtual objects (VOs) [82] which are the

digital representation of physical objects. The authors have designed a layered IoT architecture

with a focus on aiding the development of access control models for CE-IoT, and thus, named it as

Access Control Oriented (ACO) architecture for CE-IoT.

Figure 2.10 shows the ACO architecture for IoT. It has four layers: object layer, virtual object

layer, cloud services layer, and applications layer. Besides these layers, the ACO architecture

also includes two other entities—users and administrators. Users are individuals who directly or

indirectly interact with the IoT framework and benefit from its capabilities, while administrators

are responsible for managing IoT securely and efficiently. The four layers of the ACO architecture

are described as follows [35].

1. Object Layer: This is the base layer of the ACO architecture where heterogenous IoT de-

vices like sensors, actuators, embedded devices, etc. reside. Mostly these devices are con-

strained devices with limited power, memory, and storage. Users directly interact with this

layer while using and controlling the physical objects. For example, a user can manually

turn off a device, such as a light or a pump. These devices or objects mainly collect data

and send it to other endpoints, such as other objects, virtual objects, gateways, and cloud

for storage, computation, and analysis. Object-to-object communication occurs within this

layer and is achieved through various machine-to-machine (M2M) networking protocols and

standards—Bluetooth, Zigbee, 6LoWPAN, ISA 100, WirelessHart/802.15.4, and LTE. The

Internet enables the communication and data exchange with other ACO layers through a set

of protocols, such as HTTP, MQTT, and CoAP [33, 35].

2. Virtual Object Layer: In the ACO architecture, the authors promote the use of virtual

objects (VOs), that is the digital representation of physical IoT objects, and thus, introduce

the virtual object layer to facilitate objects to applications interactions via VOs. VOs are

capable of representing the current state of associated physical objects in the digital space

when they are connected, and can also store a future state for those devices when they are

26

offline. They provide a uniform interface for the physical objects to communicate with

the upper ACO layers. In AWS IoT [3], virtual objects are used to represent real-world

IoT devices in the Cloud and are known as Thing Shadows or Device Shadows. Another

capability of this layer is to enable VO-to-VO communication, irrespective of heterogeneous

physical devices and their communication protocols. The authors in [35] also discussed

different types of VO to physical object association—one(or less)-to-one, many-to-one, one-

to-many, and many-to-many associations [82].

3. Cloud Services Layer: This layer is the core of the CEIoT architecture. Many researchers

have presented the Cloud as one of the most important enabling technologies for IoT [33,37,

45, 85, 90, 91]. The cloud services layer particularly serves to host the storage, computation,

and analysis services for the huge amount of data generated by billions of IoT devices.

These resource-constrained devices leverage the capabilities of the Cloud to perform desired

functions. Users and business stakeholders can employ machine learning and data mining

technologies to extract useful information from the IoT data that can be used in numerous

ways to benefit customers.

Besides this, cloud services layer is a suitable place to host an authentication and autho-

rization service which manages secure communication and data access between IoT objects

and applications. Different types of possible interactions, including communications and

data access in this layer are: i) interactions between different cloud services inside one cloud

(intra-cloud, cross-tenant, cross-account), ii) interactions between cloud services of different

clouds (inter-clouds, multi-cloud), and iii) interactions between components of other layers

(VO-to-Cloud, Cloud-to-Apps).

4. Applications Layer: This is the layer that delivers IoT services to end users through IoT

applications and is the top-most layer of the ACO architecture. It acts as an interface for

the users to remotely send commands and receive data and information from the objects.

Users are also able to visualize the IoT data analyzed in the cloud services layer through the

27

applications. The applications also allow administrators and users to configure devices and

define access control polices for securing access to IoT resources and data.

This four-layer architecture focuses on an overall general IoT space. In some IoT applica-

tion domains, such as Wearable Internet of Things (WIoT) [62], where devices are small in size,

heterogeneous in nature (e.g., networking protocols, standards, vendors), and are highly resource

constrained. Hence, an abstraction layer that abstracts the heterogeneity and enables communica-

tions between these devices and other components in the layered architecture is necessary. Also,

within each layer and among different layers of the ACO architecture, the access and communi-

cation control requirements need to be addressed through appropriate access and communication

control models.

An enhanced ACO (EACO) architecture with five layers and an Access control framework

based on different types of communications in the EACO architecture is presented in Chapter 5. A

novel attribute-based approach for securing communications, i.e., Attribute-Based Communication

Control (ABCC) is also introduced along with an abstract ABCC model for CE-IoT in Chapter 6.

28

CHAPTER 3: ABAC MODELS AND ENFORCEMENT FOR CLOUD

IAAS UTILIZING THE POLICY MACHINE

This chapter presents two attribute-based access control models developed in the context of Cloud

Computing, viz. the User-Attribute Enhanced OSAC (UAE-OSAC) model for the OpenStack IaaS

platform, and the restricted HGABAC (rHGABAC) model. For enforcing these models in real-

world platforms, this dissertation utilizes a novel enforcement architecture consisting of the Pol-

icy Machine (PM), a reference implementation for the Next Generation Access Control (NGAC),

ANSI/INCITS standard by NIST, and the Authorization Engine (AE), a RESTful service devel-

oped in this research as an interface to the PM. Significant portions of this chapter build on the

following publications [38, 39] with some revisions and updates.

• Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. An Atribute-Based Access Control Exten-

sion for OpenStack and its Enforcement Utilizing the Policy Machine. In 2nd International

Conference on Collaboration and Internet Computing (CIC), pages 37-45. IEEE, 2016.

• Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. ABAC with Group Attributes and Attribute

Hierarchies Utilizing the Policy Machine. In Proceedings of the 2nd ACM Workshop on

Attribute-Based Access Control, pages 17-28. ACM, 2017.

3.1 User-Attribute Enhanced OSAC (UAE-OSAC) Model

In industry, RBAC [54, 92, 93] has been the dominant access control model since the 1990s. It is

a widely accepted access control mechanism for many applications. For example, in addition to

OpenStack [100], other major cloud services providers like AWS [1], and Microsoft Azure [21]

utilize some customized form of RBAC for their authorization architecture.

Besides many well-known advantages of RBAC [55], it also has some well-known limita-

tions [89], such as role explosion and role-permission explosion. Due to the limitations of RBAC,

there is a shift towards Attribute-Based Access Control (ABAC) models to enhance flexibility and

29

achieve fine-grained access control by using attributes, beyond roles and groups, of involved en-

tities in the authorization process. This shift has to be gradual since it is unrealistic for existing

systems to abruptly adopt ABAC models, completely eliminating current RBAC implementations.

Therefore, an authorization mechanism combining both RBAC and ABAC should be considered

for such platforms, which later can be adapted to be purely ABAC.

NIST has identified three different ways of combining RBAC and ABAC effectively by adding

attributes to role-based access control policies as follows [69, 74].

• Dynamic Roles: This approach uses user attributes and context attributes to assign specific

roles to the users dynamically. One of the examples of this approach is attribute-based user-

role assignment [34].

• Attribute-Centric: Here, the user roles are just another attribute of the users with no spe-

cial semantics. That is, a role does not have any special significance, such as permissions

assigned to it or hierarchical relationship with other roles.

• Role-Centric: In this method, user permissions gained through roles are further constrained

based on user attributes and other relevant attributes (e.g., environment attributes).

Using just the user roles for assigning permissions on Cloud resources is a restrictive autho-

rization framework, which will soon lead to role-explosion problem in the Cloud IaaS platform.

To secure access to data and resources in the Cloud, more flexible access control approach is re-

quired. Therefore, this research proposes and develops a role-centric ABAC model for a Cloud

IaaS platform, viz. OpenStack, known as the User-Attribute Enhanced OpenStack Access Control

(UAE-OSAC) model. It is developed by extending the existing OpenStack Access Control (OSAC)

model.

3.1.1 UAE-OSAC: Motivation

OpenStack is a leading open source cloud services platform with a rigorous development and re-

lease cycle of every six months. With its huge customer base and services, OpenStack will eventu-

30

ally or may already be facing the role explosion or role-permission explosion problem. Therefore,

it is inevitable for OpenStack to adopt a more flexible access control mechanism, such as ABAC.

However, with so many previous releases and continuous ongoing development, it is difficult to

fully replace the RBAC authorization foundation by ABAC.

In RBAC, access control policies can only be defined on the basis of roles which restricts ac-

cess control flexibility. Whereas, ABAC provides great flexibility to express fine-grained access

control policies in a simple and more powerful way based on attributes of users, subjects, and ob-

jects [63, 64, 67]. With the advancements of ABAC and its capabilities, it is essential to develop

ABAC models for real-world applications and systems. However, it is difficult for existing systems

to instantaneously adapt to attribute-based access control policies since they require a well-defined

and robust attribute and access control management system for their implementation. The transfor-

mation from RBAC to ABAC policies has to be gradual but we will eventually see wide adoption

and implementation of ABAC models in the industry. In particular, combining ABAC with roles

is one promising transition path as discussed by NIST [74].

The UAE-OSAC model is a first step towards addressing security threats from unauthorized

users and attackers to the OpenStack Cloud IaaS platform. The fundamental motivation for the

user-attribute enhanced OSAC model is to enhance current RBAC authorization framework of

OpenStack with the features of ABAC to combine the best of both models. This provides the

benefits of RBAC together with enhancing access control flexibility with support of user attributes,

while minimizing the overhead of altering the existing OpenStack access control framework.

3.1.2 UAE-OSAC: Model and Definitions

This subsection discusses and formally defines the User-Attribute Enhanced OSAC (UAE-OSAC)

model. UAE-OSAC is a role-centric ABAC model for OpenStack which adds user attributes to

the core OpenStack Access Control (OSAC) model developed in [105]. It provides a fine-grained

access control mechanism where roles determine the initial set of permissions for the users which

are further refined by ABAC policies defined based on user attributes.

31

Figure 3.1: Simplified OpenStack Access Control (OSAC) Model (Adapted from [105])

For developing the UAE-OSAC model, the core OSAC model [105] has been simplified by re-

moving Groups and Domains. The simplified OSAC model is shown in Figure 3.1 and is formally

defined in Table 3.1. It comprises seven entities: users, projects, roles, services, object types,

operations, and tokens. Groups and domains are removed in this simplified model since groups

are collection of users, and users in OpenStack belongs to a single domain or tenant (where they

are created) and can be seen and managed only by the domain owner or administrator. The scope

of simplified OSAC is within a single domain. Thus the administrative boundary of domains is not

relevant in this context.

The core components of the OSAC model are previously described in Chapter 2. Thus a brief

description is presented here. The focus is on new derived model components and the UAE-OSAC

model components. U, P, R, S, OT, OP, and T are finite sets of users, projects, roles, services,

object types, operations, and tokens respectively. There is a set of project-role pairs (PRP) which

is assigned to the users and is represented through user and project-role assignment defined by UA.

Similarly, RPA represents the assignment of permissions to the roles. The ot_service function

maps the object types to specific services in the Cloud.

When the user authenticates to OpenStack, she receives a token from the identity service,

32

Table 3.1: Simplified OSAC Model and its Core and Derived Components (Adapted from [105])
Definitions 1.
1.1 Core Components
• U, P,R, S,OT,OP and T are finite sets of users, projects, roles, services, object types,
operations and tokens respectively
• PRP = P ×R, is the set of project-role pairs
• PERMS = OT ×OP , is the set of permissions
• UA ⊆ U × PRP , is a many-to-many user to project-role assignment relation
• RPA ⊆ PERMS ×R, is a many-to-many permission to role assignment relation
• ot_service : OT → S, is a function mapping an object type to its associated service
• user_tokens : U → 2T , is a function mapping a user to a set of tokens; correspondingly,
token_user : T → U , is a mapping of a token to its owning user
1.2 Derived Components
• token_roles : T → 2R, is a function mapping a token to its set of roles, formally,
token_roles(t) = {r ∈ R | (token_user(t), (token_project(t), r)) ∈ UA}
• ETPA : T → 2PERMS , is a function specifying the permissions available to a
user through a token, formally, ETPA(t) =

⋃
r∈token_roles(t){perm ∈ PERMS |

(perms, r) ∈ RPA}.

viz. Keystone. This token represents the scope of user’s accesses on the Cloud resources. The

user_tokens is a mapping between users and their tokens. The derived components are derived

from the core components which are token_roles and Effective Token Permission Assignment

(ETPA). ETPA is based on the token a user presents during access requests, and permissions are

identified based on roles present in a token for a specific user, in specific projects.

Figure 3.2 presents the User-Attribute Enhanced OSAC (UAE-OSAC) model. It has all the

core components and derived components of simplified OSAC model along with newly added

entities and relationships. User attributes are added to the Users and a new relationship UAPA is

introduced for user-attribute value and permission assignment. This model is a role-centric ABAC

[74] model in the sense that it incorporates the existing RBAC framework of OpenStack, keeping

all its advantages, and adds in the flexibility of ABAC model by introducing user attributes. A

user’s roles determine the maximum permissions which are further reduced or constrained by user

attribute permission assignments. Table 3.2 presents definitions for the newly added components.

User Attribute is a function which takes a user and returns a specific value from its range,

where the range of an attribute is a finite set of atomic values defined for each attribute function.

33

Figure 3.2: User-Attribute Enhanced OSAC in Single Tenant

Table 3.2: UAE-OSAC Model and its Components
Definitions 2.
2.1 Additional Core Components
• UAtt is a finite set of user attribute functions
• Range(uatt) where uatt ∈ UAtt, is a finite set of atomic values defined for each user
attribute function in UAtt
• For each uatt in UAtt, uatt : U → Range(uatt), is a mapping of each user to an atomic
value in Range(uatt)
• UAPA ⊆ PERMS × {〈uatt, v〉 | uatt ∈ UATT ; v ∈ Range(uatt)}, is a many to
many permission to attribute-value assignment relation
2.2. Modified Derived Components
• ETPA : T → 2PERMS , is a function specifying the permissions available to
a user through a token and user-attribute value assignment, formally ETPA(t) =⋃
r∈token_roles(t){perm ∈ PERMS | (perm, r) ∈ RPA} ∩

⋃
uatt∈UAtt{perm ∈

PERMS | (perm, 〈uatt, uatt(token_user(t))〉) ∈ UAPA}

34

In general, attributes are of two types: atomic-valued and set-valued. An atomic-valued attribute

returns only one value from its range, whereas a set valued attribute returns a subset of values from

the range of the attribute. The attributes of a user represent its characteristics and properties. Some

examples of user attributes are Department, Clearance, and Specialization [67, 69].

The user attributes in the UAE-OSAC model are atomic-valued attributes. UAPA represents

a new relationship between user attributes and permissions. It is a set of permissions associated

with the user attributes and their assigned values. Consequently, the ETPA relationship has been

modified to include permissions from user attributes, in addition to permissions included from

user roles. One of the main objectives of this model is to depict applications of ABAC model in

real-world Cloud IaaS applications. Therefore, the UAE-OSAC model needs to be enforced in the

OpenStack platform, and its enforcement details are discussed in the following section.

3.1.3 Enforcement Utilizing the Policy Machine and Authorization Engine

While theoretical models are essential to enriching the state-of-art of ABAC, practical implementa-

tions for enforcing these models in real-world scenarios are equally crucial for their wide adoption

and applicability in the industry. This section presents the enforcement and implementation details

of applying the UAE-OSAC model in OpenStack utilizing the Policy Machine (PM) and a proof-

of-concept implementation, the Authorization Engine (AE). PM is a reference implementation of

the Next Generation Access Control (NGAC) standard proposed by the National Institute of Stan-

dards and Technology (NIST). It is an open-source freely available software and can be modified as

per the requirements. PM enables expression and enforcement of different types of access control

policies, for example, DAC, MAC, and RBAC, through its policy configuration points. It provides

a unifying framework to define, administer and enforce commonly known access control policies

as well as new access control policies. A detailed description of the PM has been presented in

Chapter 2.

Similarly, OpenStack is a rapidly changing open-source cloud platform that provides an archi-

tecture to use or enhance its services as per the users or customers requirements. OpenStack and

35

Figure 3.3: An ABAC Enforcement Architecture for OpenStack using PM

PM, both being open-source, offer the capability to integrate a custom authorization component

implementation in the OpenStack authorization framework. A customized authorization engine

is necessary to enforce the UAE-OSAC model on the OpenStack platform using the PM. Thus,

an authorization engine (AE), which is a RESTful service, has been implemented as a proof-of-

concept which acts as an interface between OpenStack and PM. In the enforcement framework,

OpenStack Kilo release with Identity API version 2 and PM version 1.5 (Harmonia 1.5) have been

used. A newer version of the PM, Harmonia 1.6, is released recently with new features and better

performance. However, this research is based on Harmonia 1.5 since the newer version released

after the research has been already conducted. It would be interesting to explore Harmonia 1.6

features and capabilities in the future work.

PM is a flexible attribute-based access control framework which allows to specify, enforce, and

combine different types of access control policies. Therefore, PM with its flexible approach and

capabilities is a suitable choice to build the enforcement framework for the UAE-OSAC model.

A. Enforcement Architecture

This dissertation introduces a novel enforcement architecture for enforcing ABAC policies in

Cloud IaaS platforms utilizing the Policy Machine (PM) [25, 51, 52], an attribute-based policy

specification and enforcement tool developed by NIST, and an Authorization Engine (AE), a proof-

36

Figure 3.4: OpenStack Policy in PM

of-concept implementation. Figure 3.3 shows the enforcement architecture. In this architecture,

the PM server acts as a centralized policy administration point that returns a set of user permis-

sions on objects based on the policy definitions. It connects to an active directory (AD), a back-end

database for PM that stores all the users and their associated user attributes. For simplicity, Open-

Stack is assumed to be using the same AD as its user identity back-end to store all users related

information, including attributes.

The PM based enforcement architecture utilizes a server-client architecture where PM server

and AE has a server-client relationship, and similarly AE, itself, acts as a server for different

services of OpenStack. OpenStack services communicate through a RESTful API to AE which

in turn communicates to PM server for making authorization decisions (e.g., Allow/Deny). Due

to dynamic nature of cloud objects, the commands in OpenStack are modeled as objects in the

authorization policy defined in PM. These commands are specific to services in OpenStack, for

example, Nova has its own commands, and similarly other services, such as Glance, Cinder, etc.

The required authorization policy definitions, typically listed in OpenStack policy file (a JSON

document), have been defined in PM Admin Tool in a policy class named, OpenStack.

An instance of OpenStack policy class, from “Objects/Attributes with ACE’s” view in the PM

tool, is shown in Figure 3.4. The figure shows a sample access control policy defined for Nova

keypair commands in OpenStack. These commands generate ssh keys for a user which in turn are

37

used while creating VMs in Nova. In Figure 3.4, Admin and Manager are roles (depicted as user

containers/attributes in PM), and compute_extension-keypair-index, compute_extension-keypair-

create, compute_extension-keypair-delete, and compute_extension-keypair-show are Nova com-

mands (depicted as objects in PM). These user attributes and objects are associated with a specific

operation set randomly named, e.g., “06932852” is an operation set with “read” permissions only

between user attributes—Admin and Manager, and object—compute_extension-keypair-index. It

means that the PM attributes Admin and Manager have read permissions on compute_extension-

keypair-index, so that a user with any of these roles is authorized to do this operation in OpenStack.

B. Authorization Engine

This section discusses the Authorization Engine (AE), a proof-of-concept implementation for en-

forcing the UAE-OSAC model in OpenStack utilizing the PM. Among many advantages of the

PM, it is an open source tool which led to the development of the Authorization Engine (AE).

AE acts as an authorization component facilitating communication between the OpenStack policy

engine and the PM. It is a RESTful service that provides an interface between OpenStack and the

PM by getting attribute information and permission list from the PM server and evaluating autho-

rization decisions. The authorization decision, either Allow or Deny, is then returned to the specific

OpenStack service where the policy is enforced.

It is written in Java using a REST API and acts as a RESTful server for OpenStack services.

For any operation to be performed by a user in OpenStack, AE initially verifies the project in the

target and the token. Then, it connects to the PM server and queries it via different PM commands

to make access control decisions based on the UAE-OSAC model for OpenStack.

AE replaces the existing policy engine in OpenStack and is responsible for evaluating the policy

defined in PM and returning access decisions to OpenStack services. OpenStack Services (S) are

the policy enforcement points (PEP) that enforce the access decisions returned by AE and responds

to the users with appropriate results, such as provide requested information if access allowed, or

return an error if access denied.

38

Figure 3.5: OpenStack Authorization using AE and PM

Figure 3.5 depicts a sequence diagram presenting authorization in OpenStack using AE and

PM. It shows the sequence of actions involved in the authorization process. Since AE is a proof-

of-concept implementation and is mainly designed to depict the applicability and feasibility of the

proposed UAE-OSAC model in OpenStack Cloud IaaS platform, it has not been optimized for

performance. AE can be designed to be a more general and independent component which could

be used with any policy-configuration tool, like PM, and can be applicable to other cloud platforms

besides OpenStack.

C. Use Cases: RBAC and Role-Centric ABAC Policies

This section presents use cases with two types of access control policies, first with only user roles,

and second with user roles and user attributes. These use cases illustrate how existing RBAC

and proposed role-centric ABAC policy would work in an organization-specific environment in

OpenStack. They are configured in simplified OSAC model and a user-attribute enhanced OSAC

model respectively and can be enforced in OpenStack using the PM and AE. They depict the added

benefits of the UAE-OSAC model.

For the UAE-OSAC model, AE has been customized to work with two types of policies, an

RBAC policy (same as OpenStack’s current access control policy), and a role-centric ABAC policy

39

with user attributes (the user-attribute enhanced OSAC policy). However, it can be easily extended

to enforce other types of access control policies as required.

• A Simplified OSAC RBAC Policy:

The first use case presents a RBAC policy, equivalent to simplified OSAC policy in OpenStack,

with two roles: Admin and Manager, and four Nova_commands: compute_extension-keypair-

index, compute_extension-keypair-create, compute_extension-keypair-delete, and compute_extension-

keypair-show. Similarly, other commands in different services of OpenStack can be incorporated

in the authorization policies. The user permissions are determined by the roles that a user is as-

signed in a specific project. The Nova keypair commands are used to generate ssh keys for a user.

These keys are used while creating VMs. A user can create, delete, list, and show details of key-

pairs using these commands. The authorization rules for each command, for a generic user u are

given below.

Roles: {Admin, Manager}

Commands (c): compute_extension-keypair-index, compute_extension-keypair-create, compute_extension-

keypair-delete, and compute_extension-keypair-show

Authorization rules for any user u:

- compute_extension-keypair-create→ Role(u) = Admin

- compute_extension-keypair-delete→ Role(u) = Admin

- compute_extension-keypair-index→ (Role(u) = Admin ∨ Role(u) = Manager)

- compute_extension-keypair-show→ (Role(u) = Admin ∨ Role(u) = Manager)

Here, the rules state that a user must have an Admin role to create or delete keypairs, whereas

compute_extension-keypair-index and compute_extension-keypair-show are authorized to be per-

formed by an Admin role or a Manager role. To enforce this authorization policy, an equivalent

authorization policy is specified in the PM. Figure 3.6 shows the policy defined in PM. There

40

Figure 3.6: A Role-Based Access Control Policy in PM

Figure 3.7: OpenStack Enforcement Results

are two roles defined Admin and Manager as shown on the left side, and associations between

commands and roles via operation sets (alpha-numerically named by default) are shown on the

right in Figure 3.6. As shown on the right side, compute_extension-keypair-index can be done

by Admin or Manager, whereas only Admin can perform compute_extension-keypair-create and

compute_extension-keypair-delete. Similarly, at the OpenStack end, two roles Admin and Manager

are defined. Either one or both of these roles are assigned to some users in a test tenant, for exam-

ple user1 is an Admin and user2 is a Manager. The policy was tested in OpenStack by executing

different commands for these users. A screenshot of the authorization results for few commands is

shown in Figure 3.7.

• A Role-Centric ABAC Policy:

This subsection presents a role-centric ABAC policy with user attributes added to the above

41

Figure 3.8: A User-Attribute Enhanced OSAC Policy in PM

policy. This is an example of the user-attribute enhanced OSAC policy. Besides roles and com-

mands, there is a user attribute—Department that can be assigned only one value from its Range

= {IT, OPS} for any user. Here, the user attribute is atomic valued unlike roles, which implies that

a user can have multiple roles assigned, but it can only be in one department, either IT or OPS.

For any user, accesses are defined based on their roles and their associated user attributes. In a real

organization, there are multiple roles and user attributes, and permissions are assigned based on

roles and user attributes.

The authorization policy is defined based on roles and user attributes and is given below. As

per the first rule, a user u is authorized to compute_extension-keypair-create only if the user is

assigned role Admin and the user is in department IT. The logical AND (∧) symbol implies that

both of the conditions must be true. Otherwise, a user without the specified role and user-attribute

value will be denied access. The second rule is similar. In the third rule, a user u needs to have

an Admin or Manager role along with user-attribute value IT or OPS. This is a role-centric policy

which means that first the role is checked, then the user-attribute value will be checked. If a role

check fails, then access is denied, and user-attribute value is not checked.

42

Figure 3.9: OpenStack Enforcement Results

Roles: {Admin, Manager}

Department: {IT, OPS}

Commands (c): compute_extension-keypair-index, compute_extension-keypair-create, compute_extension-

keypair-delete, and compute_extension-keypair-show

Authorization rules for any user u:

- compute_extension-keypair-create→ (Role(u) = Admin ∧ Dep(u) = IT)

- compute_extension-keypair-delete→ (Role(u) = Admin ∧ Dep(u) = IT)

- compute_extension-keypair-index→ ((Role(u) = Admin ∨ Role(u) = Manager) ∧ (Dep(u)

= IT ∨ Dep(u) = OPS))

- compute_extension-keypair-show→ ((Role(u) = Admin ∨ Role(u) = Manager) ∧ (Dep(u)

= IT ∨ Dep(u) = OPS))

Figure 3.8 demonstrates the specification of this policy in the PM. Unlike the previous use case,

there is an additional PM container Attributes which contains user attribute Department with two

values IT and OPS. The associations are shown on the right side and include both the user attribute

and the roles.

On the OpenStack side, few users with different roles and user attribute values are defined,

and accesses for them is tested against the desired results. For example, a user user1 is defined

43

with role Admin and user attribute department as OPS, and another user user4 is defined with role

Admin and user attribute department as IT. In this case, user4 has access to execute command

compute_extension-keypair-create, whereas user1 is denied access due to the department attribute

value OPS. Figure 3.9 presents a screenshot of the results in OpenStack.

D. Performance Evaluation

This section analyzes and discusses the performance evaluations of the ABAC extension with user

attributes to OpenStack employing the above policy use cases and their enforcement utilizing the

PM and AE based enforcement architecture. Generally, there is always some trade-off between

performance and enhanced functionality or capability. Here, the main goal is to demonstrate the

feasibility of the UAE-OSAC model in the OpenStack platform. The UAE-OSAC model incor-

porates all the benefits of existing OpenStack access control mechanism and adds great flexibility

by adding user attributes. These user attributes included in the access control policy allows a user

to be assigned least possible permissions and allows to define more fine-grained access control

policies avoiding problems such as role explosion and role-permission explosion.

Generally, an admin user is supposed to have maximum permissions but in a real enterprise,

there are various departments, and there could be an admin for each department. Similarly, many

employees are working in a department having different skill levels. Thus, creating a role for each

of these combinations result in role explosion. However, having user attributes such as department

and skills along with role admin in a policy avoids such problems and significantly enhances the

capability and flexibility of access control policy.

For conducting the performance evaluation, the experiments were performed using two types

of policies discussed in the use cases. We created scripts to evaluate the overall request-response

time and the policy evaluation time for each Nova command executed by a specific user. A number

of requests (Nova commands) were executed for different users. The graph in Figure 3.10(a) shows

the overall request-response time for a set of requests run by an OpenStack user. Whereas, Figure

3.10(b) depicts mainly the policy evaluation time taken to evaluate the access control policies and

44

(a) Overall Time Taken in Requests-Response (b) Policy Check Time for Requests by User

Figure 3.10: Performance Evaluation for UAE-OSAC Model

get an access decision when an access request was made.

The graphs in Figure 3.10 contain three curves, one for a RBAC policy in OpenStack without

any modifications (OS_RBAC), second for the same RBAC policy in OpenStack with modified

policy engine, i.e., AE and the PM (OS_PM_RBAC), and third for the user-attribute enhanced

role-centric policy in OpenStack with AE and PM (OS_PM_ABAC). The overall request-response

time for these three cases is quite similar. However, the policy evaluation time for each of these

cases differs from each other. A centralized policy administration point, the PM, and a RESTful

service AE in between PM and OpenStack adds latency in the policy evaluation time. Some of

few techniques identified to enhance performance are: i) using performance enhanced server to

host PM and AE in order to improve policy evaluation time, ii) caching policy evaluation results

locally on the OpenStack services, and iii) having PM, AE, and OpenStack services installed on an

isolated subnet, similar to a typical OpenStack installation in a production environment to reduce

communication latency in the network.

Performance evaluation of the UAE-OSAC model gives an idea of the cost of applying it in

real-world systems. A number of reasons could have contributed to the performance latency. First,

the enforcement architecture is a proof-of-concept implementation and hasn’t been optimized for

performance specifically. It has been instead driven by the objective to depict applicability and

45

feasibility of the model in a real platform, i.e., OpenStack. PM, the tool utilized to enforce this

model, is mainly designed as a general attribute-based access control framework but needs some

performance enhancements to be used in a real production environment. Also, there is network

latency contributing to the time for each request from OpenStack to a centralized PM server which

is currently residing on a node in a different subnet.

3.2 Restricted HGABAC (rHGABAC) Model

An ABAC model with user groups and object groups with the hierarchical relationship among these

groups is proposed by Servos and Osborn which is known as the Hierarchical Group and Attribute-

Based Access Control (HGABAC) model [101]. Gupta and Sandhu presented a conceptual model

of the HGABAC model with an alternate formalization in [58] for developing an administrative

access control model for HGABAC. It is a logical-formula authorization policy model. A review

of this conceptual HGABAC model along with its formal definitions has been presented in Chapter

2. A role-centric ABAC extension for OpenStack is proposed in the previous section along with its

enforcement utilizing the PM and AE. Whereas, this section presents a pure ABAC model, adapted

from the HGABAC model, named the restricted HGABAC (rHGABAC) model.

In contrast to the HGABAC model, the rHGABAC model is developed here as an enumerated

authorization policy (EAP) model, more specifically a single-value EAP. In a single-value EAP, a

policy tuple comprises of a single value of user attribute and a single value of object attribute. Due

to this property, the rHGABAC model is restricted in nature and is not capable of expressing some

kinds of policies which can be represented in HGABAC or other types of enumerated policies. An

example of a policy that can’t be expressed in rHGABAC is where a user who is both a Manager and

an Admin can access objects of type Private. A different policy where a user who is a Manager or

an Admin can access objects of type Private can be easily expressed in rHGABAC. In other words,

rHGABAC cannot express conjunctive policies.

In addition to HGABAC capabilities (e.g., groups and group hierarchy), this dissertation in-

troduces attribute hierarchy, a partial order relationship between attribute values in the range of

46

attributes, in the rHGABAC model. Different types of attribute hierarchies have been discussed in

the literature [43, 76]. To implement this model in a real-world scenario, this section utilizes the

enforcement architecture with the PM and AE, presented in the previous section. However, the

prior architecture is focused on the OpenStack platform. This section develops a more generalized

enforcement architecture so that the rHGABAC model can be implemented in any application or

platform (with some required modifications) that supports RESTful communications, for example,

the OpenStack IaaS Cloud platform or any other RESTful application platform.

PM allows to define attribute-based access control policies; however, the attributes in PM are

different than attributes in typical ABAC models as name-value pairs. The attributes (user and

object attributes) in PM are containers, for example, PM’s user attributes are containers that con-

tains a set of users. Suppose a role Manager is represented as a user attribute in PM, then it

will contain all the users (e.g., Alice, Bob, etc.) who have the role Manager assigned to them

through the assignment relation. Therefore, to overcome this disparity between ABAC attributes

and PM attributes, this research identifies a suitable policy configuration mechanism for the pro-

posed rHGABAC model employing PM capabilities. It also demonstrates use cases, their configu-

ration in PM, and implementation using a generalized authorization architecture.

3.2.1 rHGABAC: Motivation

Recently, ABAC research has gained momentum with a surge of interest from different sectors

developing in ABAC models. It is mainly inspired by the limitations of traditional access control

models, viz. DAC, MAC, and RBAC. Numerous ABAC models [38, 65, 67, 87, 103, 112] have

been proposed. Despite the existence of these different ABAC models, there is no consensus

on a specific standard ABAC model. However, a well-accepted simplest form of attribute-based

access control includes users, user attributes, objects, object attributes, actions, and permissions

or operations allowed for users on specific objects, based on attributes of users and objects. This

typical foundation provides great freedom to researchers to incrementally enhance this basic ABAC

architecture based on customized needs and requirements in different scenarios. Any additional

47

component that uses or is compatible with the basic ABAC components can be incorporated with

them to get a more powerful and flexible ABAC model.

Besides basic ABAC models, there are models designed with additional capabilities such as

groups, and group attributes and hierarchies [43, 101]. However, implementation and demonstra-

tion of such ABAC models in real-world applications are still lacking. This dissertation develops an

EAP hierarchical ABAC model (rHGABAC) with groups, group attributes, and group and attribute

hierarchy which is built upon a conceptual HGABAC model presented in [58]. Hierarchical re-

lationship among groups and attributes enhances access control flexibility and facilitates attribute

management and administration. It allows to define more fine-grained access control policies.

Moreover, EAP ABAC allows to simplify the management and administration of authorization

policies by simplifying the policy review and policy update tasks.

Although ABAC research has received significant attention in academia, it is not so common

to find implementations of these models in the industry. There are a few existing tools such as

XAMCL [32] and Policy Machine (PM) [25, 51, 52] that are capable of expressing different types

of attribute-based access control policies. However, wide adoption of these tools remains a chal-

lenge. A general authorization architecture employing the PM and custom built AE is proposed in

this research to fill the gap between the existence of these tools and their adoption in real-world

scenarios.

Consistent with the rHGABAC model, PM is also a single-value enumerated authorization

policy which makes it a feasible choice for implementing the rHGABAC model. Although PM

hasn’t been specially designed for group attributes and hierarchical relationships, these features

could be realized in PM through its containment property. The containment property, as defined

earlier, exists among PM attributes through its assignment relation. It can be defined as: if there

exist any two elements x and y such that x is assigned to (contained in) y by one or more assignment

relations, then x acquires or gets all the properties and capabilities of y in addition to its own directly

conferred properties [52].

The fundamental motivation behind the rHGABAC model is to include features, such as groups,

48

Figure 3.11: The rHGABAC Model (Adapted from [58, 101])

groups attributes and hierarchy, and attribute hierarchy, i.e., a hierarchical relationship among at-

tribute values, in an ABAC model and show its implementation as enumerated policy utilizing an

enumerated policy tool, the PM. Note that HGABAC requires attributes to be set-valued so inheri-

tance can be seamlessly achieved. Atomic-valued attributes, which can have only one value, would

require some conflict resolution in the presence of inheritance. Therefore, this research follows the

HGABAC approach.

3.2.2 rHGABAC: Model and Definitions

Servos and Osborn [101] proposed a hierarchical ABAC model known as the hierarchical group

and attribute-based access control (HGABAC) model. In addition to basic ABAC components,

this model includes user and object groups and introduces attribute inheritance through hierarchy

among groups. It also includes environment, connection, and administrative attributes in access

control policies. A group-based hierarchical assignment of user and object attributes is a novel

part of this model.

As discussed earlier, HGABAC is a logical-formula based authorization policy model. How-

ever, this section presents a restricted HGABAC model, named rHGABAC, and formalize it as

a single-value EAP. In the process of developing an administrative model for HGABAC, named

GURAG, Gupta and Sandhu presented a conceptual model of HGABAC with an alternate formal-

49

ization for it based on ABACα [58]. The rHGABAC model has been adapted from their model;

however, it is formalized as a single-value EAP policy. The model is shown in Figure 3.11 with its

formalization presented in Table 3.3.

The main components of this model are users, user groups, user attributes, objects, object

groups, object attributes, operations, policy, and authorization. There is a hierarchical relation-

ship (i.e., a partial order) among groups—user group hierarchy (UGH) and object group hierarchy

(OGH) through which attribute inheritance is achieved. For simplicity, subjects are removed from

the model and thus consider that users and subjects are equivalent. In the process of developing

HGABAC as EAP, some components are modified based on the requirements. Operations (OP)

component of the conceptual HGABAC model has become Policy, which is a collection of poli-

cies defined for each operation in OP. All the assignment relations are ignored in the context of

the HGABAC model, since it focuses only on the operational part of the model rather than the

administrative part.

Users (U) is a set of individuals or automated entities (a system or a process) which make

requests to access objects, where Objects (O) is a set of resources such as files, directories, appli-

cations, etc. Users and objects are associated with a specific set of Attributes (Att) respectively.

These attributes reflect the properties and characteristics of users and objects. Each attribute is a

function that takes an entity—a user, an object, a user group, or an object group, and returns one

or more values from its range. The range of an attribute consists of a finite set of atomic values.

All the attributes are set-valued in this model. User attributes (UAtt) is a set of user attributes for

users and user groups. Similarly, Object attributes (OAtt) is a set of object attributes for object

and object groups. Operations (OP) is a set of access rights such as read, write, etc. that can be

performed on objects by users.

The set of user groups is UG, and the set of object groups is OG. These groups have a many to

many hierarchical relationship (a partial order relation �g) among them, represented as UGH and

OGH respectively. Thus, any senior group inherits all the attributes and values from the groups

junior to it. For example, g1 � g2 implies that g1 is senior and inherits all the attributes and values

50

Table 3.3: rHGABAC Model with single-value EAP
I. Core Components
- U, O and OP are finite sets of users, objects, and operations respectively
- UG and OG are finite set of user and object groups respectively
- UAtt and OAtt are finite set of user attributes and object attributes functions respectively
- For each att in UAtt ∪ OAtt, Range(att) is a finite set of atomic values, where
Range(atti) ∩Range(attj) = φ for i 6= j
- For each uatt in UAtt, uatt : U ∪UG→ 2Range(uatt), mapping each user and user group to
a set of values in Range(uatt)
- For each oatt in OAtt, oatt : O∪OG→ 2Range(oatt), mapping each object and object group
to a set of values in Range(oatt)
- directUg : U → 2UG, mapping each user to a set of user groups
- directOg : O → 2OG, mapping each object to a set of object groups
- UGH ⊆ UG× UG, a partial order relation �ug on UG
- OGH ⊆ OG× OG, a partial order relation �og on OG
II. Derived Components (Effective Attributes)
- For each uatt in UAtt,
i) effectiveUGuatt : UG→ 2Range(uatt), defined as
effectiveUGuatt(ugi) = uatt(ugi) ∪ (

⋃
∀g∈{ugj |ugi�ugugj} effectiveUGuatt(g))

ii) effectiveuatt : U → 2Range(uatt), defined as
effectiveuatt(u) = uatt(u) ∪ (

⋃
∀g∈directUg(u) effectiveUGuatt(g))

- For each oatt in OAtt,
i) effectiveOGoatt : OG→ 2Range(oatt), defined as
effectiveOGoatt(ogi) = oatt(ogi) ∪ (

⋃
∀g∈{ogj |ogi�ogogj} effectiveOGoatt(g))

ii) effectiveoatt : O → 2Range(oatt), defined as
effectiveoatt(o) = oatt(o) ∪ (

⋃
∀g∈directOg(o) effectiveOGoatt(g))

III. Policy Components
- Policyop ⊆ {(uai, oaj)|uai ∈ Range(uattk), oaj ∈ Range(oattl)}, for uattk ∈ UAtt,
oattl ∈ OAtt, and op ∈ OP
- Policy = {Policyop|op ∈ OP}
IV. Authorization Function
- is_authorized(u : U, op : OP, o : O) = (∃vu ∈ effectiveuatti(u)|uatti ∈ UAtt) and
(∃vo ∈ effectiveoattj(o)|oattj ∈ OAtt), [(vu, vo) ∈ Policyop]

51

assigned to junior group g2, in addition to its own directly assigned attributes and values. Users and

objects can be assigned to zero or more user groups and object groups respectively. The function

directUg takes a user and returns the set of user groups to which the user has been assigned, and

directOg takes an object and returns the set of object groups to which the object belongs.

A user assigned to a user group gets all the attributes and values assigned to the group as well

as inherited attributes and their values from junior groups. The effective attribute values of a user

group ug are defined as effectiveUGuatt(ug) and comprise of directly assigned attribute values to

the user group uatt(ug) and inherited attribute values from all the groups junior to it, i.e., effective

attribute values of all the groups which are junior to ug. Hence, effective attribute values of a user

u, defined as effectiveuatt(u), consists of attribute values directly assigned to the user uatt(u) and

effective attribute values of all the groups assigned to the user. Similarly, effective values of object

and object group attributes can be obtained [58]. These derived components and their formulas are

shown in section II of Table 3.3.

In section III of Table 3.3, Policy is a set of policies where each policy is defined for a specific

operation and is represented as Policyread for read operation. A policy for a particular operation is

set of policy tuples defined for a single-value of user attribute and a single-value of object attribute.

The function, is_authorized(u, op, o), authorizes a user u to perform an operation op on an object

o, if there exists a policy tuple in Policyread, which includes a user attribute value that belongs to

the effective attribute values of user u and an object attribute value that belongs to the effective

attribute values of object o.

• Extending rHGABAC with Attribute Hierarchies

Now, an attribute hierarchy is introduced to the rHGABAC model. Attribute hierarchy (AH), rep-

resented as (�att), is a partial order relation among attribute values in the range of an attribute

Range(att). It is defined in detail with an example as follows.

52

Figure 3.12: An Example of Attribute Hierarchy

Attribute Hierarchy

The concept of attribute hierarchy has been explored in literature in the context of attribute-based

encryption by Li et al [76]. They presented hierarchical attribute-based encryption (HABE) mech-

anism where attributes can be classified in a tree structure based on their access control relationship

in a system. An abstract idea of the encryption mechanism is that attributes being the nodes in a

hierarchical tree, an ancestral node can derive its descendant’s key, but converse is not allowed.

However, the concept of attribute hierarchy in rHGABAC considers hierarchy among attribute val-

ues rather than attributes themselves. A similar concept has been presented by Biswas et al. [43]

where an ABAC model (LaBACH), with one user attribute and one object attribute, have hierar-

chical relationship among attribute values.

The hierarchical relationship can be written as �att and implies if a senior attribute value is

assigned to a user or an object then all the junior attribute values are automatically acquired by

that user or object through attribute-value inheritance. Figure 3.12 shows an example of attribute

hierarchy. User Attribute Hierarchy (UAH) is depicted in Figure 3.12 (a) where C and C++

belongs to the range of a user attribute named skills. There is a partial order relation between C

and C++, represented as C �skills C++ which implies that value C is senior to C++. Therefore,

if a user attribute value C is assigned to a user then it also acquires user attribute value C++ and

all its associated access privileges through attribute-value inheritance.

Similarly, in Figure 3.12 (b), an Object Attribute Hierarchy (OAH) is shown where type is

an object attribute, and there is a hierarchical relation between two of its values Deploy and Dev,

53

Figure 3.13: rHGABAC Model with Attribute Hierarchy

Table 3.4: rHGABAC with Attribute Hierarchy (AH) as single-value EAP
I. Additional Core Components
- UAHi ⊆ Range(uatti) × Range(uatti), a partial order relation �uatti on
Range(uatti)|uatti ∈ UAtt
- OAHj ⊆ Range(oattj) × Range(oattj), a partial order relation �oattj on
Range(oattj)|oattj ∈ OAtt
II. Modified Authorization Function
- is_authorized(u : U, op : OP, o : O) = (∃vu ∈ effectiveuatti(u)|uatti ∈ UAtt)
and (∃vo ∈ effectiveoattj(o)|oattj ∈ OAtt), and (∃vu �uatti vu′) and (∃vo �oattj
vo′),[(vu′, vo′) ∈ Policyop]

represented as Deploy �type Dev. It implies that if an object is assigned object attribute value

Deploy of object attribute type, then that object automatically gets its junior attribute value, Dev,

assigned to it. The hierarchy also implies that the objects assigned to senior object attribute value,

say Deploy, gets associated with access rights imposed on this attribute value as well as access

rights imposed on all of its junior object attribute values, such as Dev here. Thus, attribute hierarchy

facilitates policy management and attribute management. It also simplifies administrative task of

assigning attributes and their values to users and objects and specifying access control policies in

an ABAC model.

The rHGABAC model extended with partial order hierarchies among user attribute-values and

object attribute-values is shown in Figure 3.13. The addition of attribute hierarchies requires mod-

ification of the authorization function. The additional core components and modified authorization

54

function are defined in Table 3.4. The authorization function is modified as it considers the ef-

fective attribute values of a user requesting access and a protected object through direct or group

assignment along with attribute hierarchies, if any, among attribute-values of that user and object.

3.2.3 Enforcement Utilizing the Policy Machine and Authorization Engine

The implementation details of the authorization framework utilizing the PM and AE will be dis-

cussed in this section. PM allows to configure and implement different types of enumerated and

logical-formula (with some restrictions) authorization policies. First, a generalized authorization

architecture independent of any application or system is presented, and second, two variations of

the rHGABAC model with the help of relevant use cases in the context of an enterprise organization

are described and implemented in generalized authorization architecture.

The goal is to develop a general authorization framework which can be readily used by any

application or system supporting RESTful service that is interested in implementing attribute-

based access control policies. The architecture includes a PM Server as policy administration

point (PAP) and policy decision point (PDP), and a PM Database used as policy information point

(PIP) where all the access control data related to users, objects, their attributes, relations, etc. are

stored.

A. Authorization Architecture

Figure 3.14 shows a generalized authorization architecture using the PM and AE. It consists of a

PM Server which acts as a PAP and PDP. Obligation and prohibition relations for not considered in

the architecture for now; therefore, there are no negative authorization policies. The PM Client is

the authorization engine (AE) built in this research, which communicates with PM Server on one

side and acts as a REST server for the applications on the other. Therefore, it also can be thought of

as an interface between PM Server and applications using this architecture. The applications need

not to be modified to make them PM aware, and instead can readily use PM for their security policy

and authorization requirements. However, the applications need to support RESTful service to be

55

Figure 3.14: Authorization Architecture Utilizing PM and AE

Figure 3.15: Example Authorization Request and Response

able to make HTTP requests to AE. These applications are responsible for policy enforcement once

the PM makes the authorization decisions. The PEP in the application would enforce the decisions

on specific resources residing in the resource repository of these applications. This architecture

is based on the assumption that both the PM and applications use the same identity management

system, viz. Active Directory (AD) here, to store information about users, user groups, their

attributes, etc.

Applications manage their objects and resources themselves including PEP and resources repos-

itory components as shown in the PM architecture. PM Server stores references to these objects in

the PM database and policies are defined based on these objects and their attributes. When a user

requests access to resources in an application, the application issues an HTTP request to AE for

evaluating the policy which gets the authorization decision from the PM. The HTTP request would

originate from a machine where the application is hosted. An authorization request comprises of

56

a user requesting access, an operation (e.g., read, write, execute), and the requested object. The

request is implemented as an HTTP GET. An example of the authorization request and its response

is shown in Figure 3.15. The request includes the authorization data in JSON format and gets a

HTTP response with authorization decision returned in JSON format as well.

B. Policy Configuration and Setup

Policy Machine (PM) provides a robust and near complete access control framework with PDP,

PAP, PIP, and PEP components included in one tool. Existing access control models such as

DAC, MAC, and RBAC can be configured and implemented in PM [51, 52]. PMmini, a bare

minimimum version of PM with all the core elements and only two PM relations—assignment, and

association, has been shown to be capable of representing attribute-based access control policies,

such as LaBACH [43]. In LaBACH model, there is only one user attribute and one object attribute,

and this scenario maps exactly with PM’s inherent way of configuring access control policies.

The attributes in PM are containers for users and objects, whereas the attributes in ABAC

policies are name-value pairs and the values of these attributes are used in the policy specification.

The values of user and object attributes determine allowed accesses for a user on an object. Using

a rich set of PM’s capabilities and freedom to express access control policies in different ways, this

dissertation identifies an intuitive method of configuring hierarchical attribute-based access control

policies in the PM.

PM uses its user attributes and object attributes in access control policy specification. Different

aspects of the rHGABAC model have to be mapped within this territory to configure and imple-

ment it in the PM. Therefore, user groups, user attributes, and user attribute-values of the model

are represented as PM’s user attributes, and object groups, object attributes, and object attribute-

values as represented as PM’s object attributes. PM’s assignment relation is used to incorporate

the hierarchical relationships in the model, taking advantage of the containment property of the

attributes in PM. The policies for each operation are defined using association relation as defined

for PMmini [43]. The following subsections present use cases to provide a better understanding

57

Figure 3.16: User and Object Groups with Associated Attributes

and demonstration of this mechanism.

C. Use Cases

This section discusses two variations of a use case, one with groups and group hierarchy, and other

with the additional attribute-value hierarchy which is a modified version of the former. These use

cases closely resemble a real-world enterprise scenario and are capable of representing different

features of the rHGABAC model. These use case scenarios are configured and implemented in the

PM using the generalized authorization architecture.

Enumerated and logical-formula policies are, in general, equally expressive. However, it is

difficult to include negative attribute values in PM, such as not a Manager in a policy. For example,

defining a policy, such as a user with title IT_Manager and not with a title CTO is allowed to read

objects with type Networking, is a complicated task in the PM and requires the use of prohibition

relation, constraints, and a combination of policies. However, a restricted HGABAC (rHGABAC)

policy can be easily defined in PM using core elements and assignment and association relations.

• Group Attribute and Group Hierarchy:

This use case includes user groups, object groups, and hierarchy among groups, besides other

ABAC components. A set of user groups, their attributes, and hierarchy among these groups is

shown in Figure 3.16(a). Similarly, Figure 3.16(b) shows a set of objects groups, their attributes,

and their hierarchical relationships. There are four user groups DevOps, IT, Development and

Deployment, and there is a group hierarchy among DevOps, Development, and Deployment. De-

58

velopment and Deployment are senior to DevOps and inherit attributes and their values from it

(depart and its value). They also have their own directly assigned attribute, i.e., skills, with spe-

cific values. IT group does not have any hierarchical relationship with other groups and has only

one directly assigned attribute, i.e., depart = {IT}.

A similar object group hierarchy is shown in Figure 3.16(b) between four object groups,

Projects, Networking_Project, Dev_Project, and Depl_Project. Projects is junior to all the other

groups and has one object attribute type with one value General assigned to it. The senior groups

inherit this object attribute and its value along with their directly assigned attribute values. For

example, Networking_Project inherits object attribute type and its value General from Projects,

and also has another value assigned to it as Networking. Thus, the effective attribute values of

Networking_Project for attribute type is a set of all the values, directly assigned and inherited

through the hierarchy, written as {General, Networking}.

In addition to two user attributes, namely depart and skills, there is one more user attribute,

title, with range {CTO, IT_Manager, DevOps_Manager}. This user attribute is considered to be

directly assigned to the users since titles are user-specific rather than being assigned to a group

of users. There is only one object attribute, type, assigned to the object groups. Any object in an

object group automatically gets all the attributes and its values assigned to it through that group.

Similarly, users get user attributes and values assigned directly or through user groups based on

their group membership.

For this use case, Figure 3.17 shows a graph similar to the PM element graph [52] presented

in Chapter 2. A policy named Group Hierarchy Policy (GHP) is shown at level 0, user attributes

and object attributes are shown at level 1. User attributes, their values, and user groups are on the

left-hand side of the policy and object attributes, their values, and object groups on the right-hand

side of the policy. User and object attribute values are placed at level 2, and these entities are

assigned to each other using assignment relation. Assignments in the graph are represented as a

directed edge, for example, x ASSIGN y is a directed edge from x to y.

User and Object groups are present at level 3 in this use case. If there is a hierarchy among

59

Figure 3.17: Group Hierarchy Policy Graph (Based on PM Graph Structure)

groups, then senior groups are shown one level above their junior groups, with constant increments

in level for each level of hierarchy among groups. DevOps_Group is a junior group and is shown

one level below the senior groups, Dev_Group and Depl_Group. The same applies to the object

side where Projects_Group is shown one level below other senior object groups. The containment

property of PM attributes enables to represent the hierarchical relationships between groups.

Users and objects are the leaf nodes of the graph and could appear at any level based on their

assignment to user groups, user attribute values, and object groups, object attribute values respec-

tively. A policy in the PM is defined using associations which comprise of a user attribute value, an

operation and an object attribute value written as (uai, op, oaj). To keep the graph simple in Figure

3.17, we show only one association between IT_Manager (a user attribute value for Title) and Net-

working (an object attribute value for type) labeled as read using a dashed line. This association

allows user_IT1 to read obj_Net1. Therefore, the user assigned to this title, i.e., IT_Manager can

read all the objects of type Networking.

This use case defines an access control policy for the read operation. Policies are specified

based only on user attribute values and object attribute values. For each policy tuple in Policyread,

only a single value of user attribute and a single value of object attribute can be used in a single-

value EAP. A policy for read operation, based on Figure 3.17, is specified as follows.

i. A user who is an IT_Manager or works in the IT department can read objects of type Net-

60

Table 3.5: Policy for Read Operation with Group Hierarchy
Policyread

User Attribute Values Object Attribute Values
IT_Manager Networking
IT Networking
DevOps_Manager Dev
Java Dev
DevOps_Manager Deploy
Java Deploy
C Deploy
C++ Deploy
CTO General

Figure 3.18: Sample Authorization Request and Response

working.

ii. A user who is a DevOps_Manager or has Java skill can read objects of type Dev.

iii. A user who is a DevOps_Manager or has Java or C or C++ skill can read objects of type

Deploy.

iv. A user who is a CTO can read objects of type General.

The fourth policy statement incorporates a powerful policy, where a CTO can read all the ob-

jects in the above scenario due to the attribute inheritance achieved through object group hierarchy.

All the groups have type General assigned to them through object group hierarchy and attribute

inheritance. Thus any object assigned to any one of these groups can be read by a CTO. Therefore,

many implied policies can be derived via one policy tuple.

Table 3.5 presents a set of policy tuples for Policyread. Each row of the table represents an

association defined in the PM. An authorization request involving user user_IT2, operation read

61

Figure 3.19: Attribute Hierarchy

and object obj_Net1, along with its response is shown in Figure 3.18. This request is granted based

on the second row of Table 3.5.

The importance and benefits of group attributes and hierarchy can be realized when there are

numerous users and objects in the system, and attributes need to be assigned to each one of them.

This use case presents a limited number of users and objects for the sake of clarity. However, in a

real-world scenario, there are hundreds, thousands, or even millions of users and objects. In such a

scenario, rHGABAC could be an effective solution for access control requirements with simplified

attribute assignment and administration, and better policy management.

• Attribute Hierarchy:

In enumerated authorization policies, an inherent problem is the exponential size of a sophisti-

cated access control policy and its associated space requirements. The number of policy tuples in

an authorization policy, for an operation, would increase exponentially with the large size of ranges

of user attributes and object attributes. A policy consists of a set of policies defined for different

operations (e.g., read, write, etc.) in a system which further worsens the problem. An interesting

solution to this problem could be to realize hierarchical relationships between the values of user

attributes and object attributes.

With attribute hierarchy, a single policy tuple defined in the policy can imply many policy tuples

62

Table 3.6: Policy for Read Operation with Group and Attribute Hierarchy
Policyread

User Attribute Values Object Attribute Values
IT_Manager Networking
IT Networking
DevOps_Manager Dev
Java Dev
C++ Deploy
CTO General

through partial order relations among user and object attribute values. This subsection introduces

attribute hierarchies among ranges of one user attribute (skills) and one object attribute (type) from

the above use case. The subgraph for both skills and type are shown in Figure 3.19(a) and 3.19(b)

respectively. In the use case graph of Figure 3.17, skills has all three values assigned to it at the

same level. However, in subgraph of Figure 3.19(a) C is assigned to C++ and C �skills C++. This

means that attribute value C is senior to C++ and gets all the properties and capabilities of C++.

Therefore, any accesses allowed for C++ would be permitted for C as well.

In Figure 3.19(b), the type attribute is shown with a partial order hierarchy between its values

Deploy and Dev, written as Deploy �type Dev where Deploy is senior to Dev. Any association

involving junior attribute value will also be implied on a senior attribute value. In other words,

Deploy will inherit all the associations applied to Dev.

Based on attribute hierarchies introduced in skills and type, the associations defined in PM are

changed. The updated policy tuples for Policyread are shown in Table 3.6. Three policy tuples were

removed since they were implied through attribute hierarchy. Two tuples (DevOps_Manager, Deploy)

and (Java, Deploy) were removed since they were implied through hierarchy between Deploy and

Dev. Similarly, (C, Deploy) is removed as its implied through hierarchy between C and C++.

This clearly shows how hierarchical attributes can be exploited in reducing the size of enumerated

policies. It also contributes in simplifying administrative tasks by reducing the number of direct

policy tuples to be defined in a policy.

An authorization request for user user_C1 (assigned to C), operation read and object obj_Depl1

63

Figure 3.20: Sample Authorization Request and Response

(assigned to Deploy), along with its response is shown in Figure 3.20. Even though there is no

direct policy tuple defined between C and Deploy attribute values, this request is granted through

an implied policy tuple based on effective user attribute values of the user and effective object

attribute values of the object.

The partial order relationship among groups and attributes depends on how they are realized

while defining authorization policies. Some hierarchical ordering is intuitive, whereas others may

not be so evident. It is for security architects and administrators to design these hierarchies based

on appropriate techniques, such as attribute mining or attribute engineering, to define access con-

trol policies in the most efficient way. However, these techniques are outside the scope of this

dissertation.

D. Evaluation

This section conducts experiments for measuring the policy evaluation times for different types of

attribute-based policies (based on above use cases) in AE and PM. AE receives an authorization

request when a user requests access on an object in an application. It communicates to the PM to

get authorization decisions. For the evaluation, the time taken by AE to communicate to the PM

and evaluate authorization decisions was measured for three type of access control policies: Role-

Centric ABAC, rHGABAC without AH, and rHGABAC with AH. Table 3.7 presents the average

policy evaluation time for each of these policies. The average policy evaluation time using AE and

the PM is shown in the second column, while the types of access control policies are shown in the

first column.

For the experiments, initially, each type of policy is setup in the PM. Then multiple autho-

64

Table 3.7: Average Policy Evaluation Time for ABAC Policies
Policy Avg. Time (ms)
Role-Centric ABAC 26.04
rHGABAC 27.04
rHGABAC with AH 26.57

rization requests from a user are executed for each one of them to obtain averages of their policy

evaluation times. The average policy evaluation time for different policies is very close to each

other with a maximum difference of 1 millisecond. The results were consistent with the initial hy-

pothesis of this research since the average policy evaluation times is expected to be similar, mainly

due to the way ABAC policies are configured in the PM and implemented in the authorization

architecture.

The average policy evaluation time for rHGABAC with AH is slightly less than rHGABAC. The

rHGABAC with AH model is capable of representing complex and large policies in a concise way

using the hierarchies among attribute values. It is also evident in the use case discussed in the

Use Case section above. A concise policy in the PM implies a compact PM policy graph with

fewer associations between entities or elements. Both rHGABAC and rHGABAC with AH policy

defined in the PM has the same set of users, user groups, user attributes, objects, object groups,

object attributes; however, the number of association relations (policy tuples) varies which results

in a disperse policy tree for rHGABAC compared to a concise or small policy tree for rHGABAC

with AH. Thus, this could be one of the possible reasons for slightly faster policy evaluation time

in rHGABAC with AH policy, since the small number of association relations defined in the PM

would involve less internal evaluations to evaluate an access control decision.

A role-centric ABAC is a special type of attribute-based access control policy (presented in

the first section of this chapter) which includes roles and attributes in the policy specifications

and policy decisions. Although this policy had the lowest average of policy evaluation time in

the experiments, the time would increase exponentially if there are numerous roles that a user

can be assigned. It is a combination of role-based and attribute-based access control policy and

would require a more detailed investigation against similar combinational access control policies.

65

However, this work does not focus on such in-depth analysis of combinational models, hence is

outside the context of this dissertation.

Overall, the initial investigation shows that the average policy evaluation times are compara-

ble across different types of ABAC models. The use cases and their implementation demonstrate

that the rHGABAC model can be conveniently implemented utilizing the PM and AE, and can be

applied in real-world applications and systems. However, the enforcement framework in the ap-

plications (e.g., OpenStack) utilizing the PM need to be designed accordingly in order to optimize

policy evaluation and policy enforcement times.

3.3 Related Work

This section briefly reviews the prior efforts which have been made on adding attributes to the

OpenStack access control and authorization framework. The applicability of ABAC in OpenStack

has been studied in different scenarios. Approaches to include attributes in OpenStack for cloud

federation and federated identity management are discussed by Chadwick et al. [46] and by Lee

and Desai [75]. Pustchi and Sandhu [88] discuss the application of ABAC to enable collabora-

tion between tenants in a cloud IaaS platform. In contrast, the UAE-OSAC model is focused on

authorization in OpenStack within a single tenant.

Simialrly, a unified ABAC model is presented in [67] by Jin et al. that can be configured to

do mandatory, discretionary and role-based access control, and demonstrated an OpenStack im-

plementation [68] as a replacement for the native OpenStack RBAC. However, the UAE-OSAC

model is specifically designed to incorporate OpenStack’s existing RBAC model with an ABAC

extension. A formal role-centric attribute-based access control (RABAC) model has been proposed

by Jin et al. [69], along with XACML [32] profiles for this model. The role-centric ABAC exten-

sion for OpenStack developed here, in contrast, includes only user attributes as a first step leaving

object attributes for future work. In cloud environments the objects are created on-demand, hence

cannot be specified in the policy during policy configuration [105].

Besides, the authorization architecture is different and more flexible based on the PM and AE.

66

PM is an open-source and freely available software by NIST [25] that facilitated in the develop-

ment of a customized authorization engine component in this research. PM’s flexibility of speci-

fying different types of access control policies beyond attribute-based and its capabilities made it

a desirable choice for it to be used in the enforcement framework.

67

CHAPTER 4: ABAC FOR AWS INTERNET OF THINGS

This chapter investigates a major commercial cloud-IoT platform, AWS IoT [3], provided by Ama-

zon Web Services (AWS) [1]. It develops a formal access control model for AWS IoT called AWS-

IoTAC. AWS-IoTAC builds upon the AWS Access Control (AWSAC) model developed by Zhang

et al. [115] for AWS access control in general. The AWS-IoTAC model is demonstrated using a

smart-home use case implementation in the AWS IoT platform. Inspired by the use case, this dis-

sertation identifies the need of a fine-grained access control mechanism for IoT and proposes some

Attribute-Based Access Control (ABAC) extensions to the AWS-IoTAC model for enhancing the

flexibility of access control in AWS IoT. Major sections of this chapter are based on the following

publication [40] with some revisions and modifications.

• Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. Access Control Model for AWS Internet

of Things. In International Conference on Network and System Security, pages 721-736.

Springer, 2017.

4.1 AWS IoT Access Control (AWS-IoTAC) Model

Internet of Things (IoT) refers to a network of internet-enabled physical devices or things, and their

underlying communication with each other and other internet-enabled devices and systems [18].

With the advent of technology and ubiquitous internet, devices besides computers, laptops, and

smartphones, are becoming smarter along with internet connectivity such as televisions, vehicles,

thermostats, bulbs, watches, etc. to make human life more comfortable and convenient.

IoT is a pervasive concept today. The building blocks of IoT, i.e., the IoT devices are resource-

constrained with limited computational power, storage, and memory space. Therefore, to sup-

port rapidly broadening IoT infrastructure, Cloud Computing has become an enabling technology.

The integration of cloud and IoT has been suggested as a viable IoT architecture in the litera-

ture [33, 37, 44, 79, 85, 86, 90, 91]. In general, a Cloud-Enabled Internet of Things (CE-IoT) archi-

tecture comprises a centralized Cloud that provides computation, storage, and analytic power to

68

resource-constrained IoT devices. In CE-IoT, the burden of secure connection and communication

is subsidized by the Cloud.

Security is an essential requirement for IoT, especially as deployments grow. The number of

connected devices is increasing exponentially. As expected by Gartner, there will be more than 20

billion connected devices by 2020 [8]. This rapid growth in IoT has given rise to an attractive and

new attack surface. Access control is an essential component of security solutions for IoT. There

has been significant research done on access control models for IoT in academia, while industrial

deployment of several cloud-enabled IoT (CE-IoT) platforms have already been introduced.

One such instance of CE-IoT platform is AWS IoT, an IoT service introduced by Amazon Web

Services (AWS), one of the largest Cloud services provider. This dissertation studies and explores

the AWS IoT platform, and develops an abstract access control model for it, which is called the

AWS-IoTAC model. This model is developed by extending AWS cloud’s formal access control

(AWSAC) model, previously published in the academic literature [115], to incorporate the IoT

specific components. The AWS-IoTAC model is abstracted from AWS IoT documentation and has

been formalized based on AWSAC definitions.

4.1.1 AWS-IoTAC: Motivation

IoT has received considerable attention in both industry and academia in recent years. Accordingly,

many access control models for IoT have been proposed. Ouaddah et al. [84] provide a recent

survey of these. Meanwhile, dominant cloud providers, such as Amazon Web Services (AWS) [1],

Microsoft Azure [21], and Google Cloud Platform (GCP) [11], have built upon their existing cloud

services and resources to launch IoT services. Azure and GCP utilize some customized form of

role-based access control (RBAC) [54,93] with predefined roles and groups for their access control

requirements in the cloud. GCP uses RBAC for its IoT solutions authorization [12]. AWS uses a

policy-based access control mechanism for its Cloud and IoT services [1, 3]. Unlike Azure cloud,

Azure IoT has adopted policy-based access control to specify IoT authorizations [7]. However, as

yet there is no consensus on a formal access control model for CE-IoT.

69

The IoT services require new concepts beyond basic access control in the cloud. Therefore,

the primary motivation behind this research is to investigate a real-world CE-IoT platform and

develop a formal access control model for it which is still lacking. In this research, the real-world

CE-IoT platform considered is AWS IoT, leading to an abstract access control model for it known

as AWS-IoTAC. This model is abstracted from dispersed AWS IoT documentation available, along

with detailed exercises on this service to validate the understanding of the IoT functionality. This

model serves as an initial attempt towards the development of standard access control models for

CE-IoT.

While developing an access control model for IoT, it is useful to conceptualize the model in the

context of a well-defined IoT architecture. A layered access control oriented (ACO) architecture for

cloud-enabled IoT has been proposed by Alshehri and Sandhu [35]. Mapping of different entities

of the AWS-IoTAC model with the four layers of ACO architecture is presented to underscore

the relevance of the model with a CE-IoT architecture specially designed from an access control

perspective. A smart-home use case is demonstrated and configured in the AWS IoT platform to

depict the applicability of the AWS-IoTAC model in addressing IoT authorizations in AWS.

Currently, most of the CE-IoT platforms utilize some customized form of RBAC, but RBAC by

itself is insufficient to address the dynamic requirements of IoT. With billions of connected devices

in the near future, it will become inevitable for IoT to adopt a flexible access control model, such as

attribute-based access control (ABAC) [63, 67], for meeting dynamic access control requirements

of the IoT services. In ABAC, attributes (properties), represented as name-value pairs, of users

and resources are utilized to determine user accesses on resources or services. AWS IoT supports

a partial form of ABAC with attributes for the IoT devices, however, the use of these attributes

in access control policies is limited. Therefore, we propose ABAC enhancements to our (AWS-

IoTAC) model for incorporating a complete form of ABAC in it.

70

Figure 4.1: AWS IoT Access Control (AWS-IoTAC) Model within a Single Account

4.1.2 AWS-IoTAC: Model and Definitions

An access control model for AWS IoT, a cloud-enabled IoT platform, involves different entities

in the IoT space and should define how these entities are authorized to interact with each other

securely. This dissertation incorporates the entities involved in access control and authorization

in the AWS IoT service into the AWSAC model so as to develop the AWS-IoTAC model. AWS-

IoTAC is based on meticulous exploration of the extensive documentation on AWS IoT and hands-

on experiments on this service.

The AWS-IoTAC model is shown in Figure 4.1 along with its different components. Since

it is developed on top of the AWSAC model, it consists of all the components and relations of

AWSAC with additional set of components and relations associated with the AWS IoT service. A

review of AWSAC model has been presented in Chapter 2. Table 4.1 gives the formal definitions

for the AWSAC model. A, U, G, R, S, OT, and OP are finite sets of accounts, users, groups, roles,

services, object types, and operations in AWS respectively. The ownership relations UO, GO, and

RO represents a mapping of users, groups, and roles to a specific account respectively. The set

of permissions PERMS is defined based on object types with pertinent operations on these object

types. The relation user_group represents a many-to-many relationship between users and groups

71

Table 4.1: AWSAC Model Components [115]
Definition 1.
- A,U,G,R, S,OT and OP are finite sets of accounts, users, groups,
roles, services, object types, and operations respectively
- User Ownership (UO) : U → A, is a function mapping a user to its
owning account, equivalently a many-to-one relation UO ⊆ U × A
- Group Ownership (GO) : G → A, is a function mapping a group to
its owning account, equivalently a many-to-one relation GO ⊆ G× A
- Role Ownership (RO) : R → A, is a function mapping a role to its
owning account, equivalently a many-to-one relation RO ⊆ R× A
- Object Type Ownership (OTO) : OT → S, is a function mapping an
object type to its owning service, equivalently a many-to-one relation
OTO ⊆ OT × S
- PERMS = OT ×OP , is the set of permissions
- Virtual Permission Assignment (VPA): V PA ⊆ (U ∪ G ∪ R) ×
PERMS, is a many-to-many virtual relation resulting from policies
attached to users, groups, roles and resources
- user_group ⊆ U × G is a many-to-many mapping between users and
groups where users and groups are owned by the same account
- virtual user_role (VUR): V UR ⊆ U ×R is a virtual relation resulting
from policies attached to various entities (users, roles, groups), where
users use AssumeRole action to acquire/activate a role authorized in
VUR

within a single account.

An AWS policy, a JSON document, defines permissions on resources (services, object types).

It can be attached to users, groups, and roles, as well as resources itself. Based on the policy

assignment to various entities, a many-to-many virtual relationship is defined as Virtual Permis-

sion Assignment (VPA). Similarly, a virtual relationship virtualuser_role results when a user

uses the AssumeRole action to activate an AWS “role” for itself and acquire permissions based on

policies attached to the user, roles, and groups. In addition to the AWSAC components and rela-

tions, the AWS IoT service has its specific components and relations which are incorporated and

formally defined in the AWS-IoTAC model. The additional or modified components and relations

are formally defined in Table 4.2 and discussed below.

There are six additional components in the AWS-IoTAC model. AWS IoT Service (AIS) is the

new IoT service in AWS. It owns different entities to support IoT devices and their underlying au-

72

Table 4.2: AWS-IoTAC Model – Additional Components and Relations
Definition 2.
- AWS IoT Service (AIS) is one of the Services(S) in AWS
- C,D, IO, IOP , and Ru are finite sets of X.509 certificates, physical
IoT devices, IoT objects, IoT operations, and rules defined in the rules
engine of AIS respectively
- Cert Ownership/Registration (CO) : C → AIS, is a function map-
ping a certificate to its owning service (AIS), equivalently a many-to-
one relation CO ⊆ C × AIS
- Rules Ownership (RO) : Ru → AIS, is a function mapping a rule
to its owning service (AIS), equivalently a many-to-one relation RO ⊆
Ru× AIS
- Thing Ownership (TO) : IO → AIS, is a function mapping the IoT
objects to its owning service (AIS), equivalently a many-to-one relation
TO ⊆ IO × AIS
- PERMS = OT × OP , is the set of permissions (including IoT per-
missions)
- Virtual Permission Assignment (VPA): V PA ⊆ (U ∪ G ∪ R ∪ C) ×
PERMS, is a many-to-many virtual relation resulting from policies
attached to users, groups, roles, certificates, and resources
- cert_binding⊆ C×D is a mutable one-to-one relation between X.509
certificate and IoT devices within a single account
- trigger_action ⊆ Ru × (IO × S) represents a many-to-many map-
ping between rules and IoT objects and AWS services on which a rule
triggers action(s)

thorization in the cloud. The AWS-IoTAC model represents AIS as a separate entity to emphasize

its importance and clearly show other components and relations associated with it. The rectangular

box of AIS emphasizes its singleton existence in AWS. Certs (C) is a set of X.509 certificates [31],

issued by a trusted entity, the certificate authority (CA). AIS can generate X.509 certificates for the

IoT clients, or allow the use of certificates created by the clients as long as they are signed by a

registered CA in the AWS IoT service. Certs are used by MQTT [22] based clients (IoT devices,

applications) to authenticate to AIS. MQTT, an OASIS standard, is a machine-to-machine (M2M)

lightweight publish/subscribe messaging protocol, specially designed for constrained devices [22].

Currently, AWS IoT supports MQTT and HTTP protocol for IoT communications.

Devices (D) represent a set of connected IoT devices, such as sensors, light bulbs. They can

exist independent of AIS, thus are shown in a different color in the model. A valid X.509 certificate

73

and its private key need to be copied onto the device, along with a root AWS CA certificate before

authentication and establishment of a secure communication channel with the AWS IoT service.

The certificates to devices associations are done through the cert_binding relation. In the AWS

IoT platform, one certificate can be attached to many things/devices. Similarly, many certificates

can be copied onto one IoT device. However, AWS-IoTAC assumes that cert_binding is a one-

to-one association between devices and certificates for better authorization management, and is

mutable so can be changed by an administrator in cases of certificate expiry or revocation. In AWS

IoT, the access control policies are attached to certificates and are enforced on physical IoT devices

associated with these certificates.

IoT Objects (IO) represent virtual IoT objects in the cloud. Virtual objects are the digital

counterparts of real physical devices, or standalone logical entities (applications) in the virtual

space [82]. In AWS IoT, a Thing and a Thing Shadow represent the IoT objects which are the virtual

representation of real physical IoT devices in the cloud. For each IoT device, the model assumes

that there is at least one thing with its thing shadow instantiated in the cloud, which provides a

set of predefined MQTT topics/channels (associated with this device) to allow interaction with

other IoT devices and applications, even when the device is offline/disconnected. Thing shadow

maintains the identity and last known state of the associated IoT device, as well as stores a future

desired state of the device.

IoT Operations (IOP) are a set of operational operations defined for IoT service and do not

include the administrative operations, such as create things, certificates, etc. The basic set of IoT

operations can be categorized based on the communication protocols used by IoT devices and

applications to communicate with the AWS IoT service. For MQTT clients, four basic IoT op-

erations are available: i) iot:Publish allows devices to publish a message to an MQTT topic, ii)

iot:Subscribe allows a device to subscribe to the desired MQTT topic, iii) iot:Connect allows an

MQTT client to connect to the AWS IoT service, and iv) iot:Receive allows devices to receive mes-

sages from subscribed topics. Similarly, for HTTP clients, iot:GetThingShadow allows to get the

current state of a thing shadow, iot:UpdateThingShadow allows to send messages to update/change

74

the state of a thing shadow, and iot:DeleteThingShadow deletes a thing shadow. Whenever a device

or an application sends a message to a virtual thing in the cloud, a new thing shadow is automati-

cally created, if one does not already exist.

Rules (Ru) are simple SQL statements which trigger predefined actions based on the condition

defined in the rule. A rule receives data from a device/thing and triggers one or more actions.

The actions route the data from one IoT device to other IoT devices, or to other AWS services.

Each rule must be associated with an IAM (Identity and Access Management) role which grants it

permissions to access required IoT objects and AWS services on which actions are triggered. The

relation trigger_action represents a many-to-many mapping between rules and IoT objects and

AWS services on which the rule triggers action(s).

The access control policies in AWS have been modified to include IoT operations and re-

sources, and are thereby named as IoT policies. AWS IoT utilizes both IoT policies and IAM poli-

cies to assign specific permissions to IoT devices, IAM users, and IoT applications. Consequently,

Virtual Permission Assignment (VPA) has been updated to include the IoT policies, and these

policies are attached to X.509 certificates. The policy attached to a certificate is enforced on the

device which uses that certificate to connect and authenticate to the AWS IoT service. One policy

can be attached to multiple certificates, or multiple policies can be attached to one certificate.

All the components and relations of the AWS-IoTAC model are defined within the scope of

a single AWS account. Cross-account authorizations are outside the scope of this research. The

components and relations of AWS-IoTAC are based on current capabilities of the AWS IoT service.

Although there are many other components and relations associated with the AWS IoT service, this

model encompasses the most important ones from an access control perspective.

4.1.3 AWS-IoTAC Mapping in ACO Architecture

This section shows the relevance of the AWS-IoTAC model to the Access Control Oriented (ACO)

architecture for IoT presented by Alshehri and Sandhu [35]. Figure 4.2 depicts a mapping of

different entities of the AWS-IoTAC model with the ACO architecture. Different entities map to

75

Figure 4.2: AWS-IoTAC Entities Mapping to ACO Architecture for CE-IoT

different layers of the ACO architecture. Physical devices or things exist at Object layer, and

virtual IoT things or resources map to the Virtual Object layer. All the AWS cloud services and

resources are at Cloud Service layer, and users and applications interacting with the Cloud and IoT

devices exist at the Application layer. The authorization policies are defined in the cloud. These

policies enforce access control decisions for physical devices and applications (used by users)

trying to access cloud and virtual IoT resources. AWS-IoTAC is generally compatible with the

ACO architecture.

4.2 A Smart Home Use Case in AWS IoT

This section presents a smart-home use case where a thermostat and two light bulbs are controlled

through the AWS IoT service based on sensor inputs. The main focus here is on interactions

between IoT devices through the cloud. (A more complex example would involve different users

and applications also interacting with IoT devices.) It demonstrates how the access control and

authorization between various components are configured based on the AWS-IoTAC model.

4.2.1 Use Case Setup and Configuration

Figure 4.3 shows different connected devices, virtual things/objects, and AWS Cloud and IoT

Services involved in the use case. First, an AWS account is created to setup the use case in the AWS

IoT service. Using AWS IoT management console, one virtual object (thing) for each physical

76

Figure 4.3: Smart-Home Use Case Utilizing AWS IoT and Cloud Services

device—two sensors, one thermostat, and two light bulbs were created. A thing can have a thing

type that stores configuration for similar things, and thing attributes (key-value pairs) representing

properties of individual IoT devices.

For example, Sensor_1 has a Sensor thing type and has two attributes SType (sensor type) and

Belongs (belongs to). The values for these attributes are set during thing creation. The X.509 cer-

tificates for each IoT thing/device must be created using “one-click certificate creation” in the AWS

IoT console. Then, appropriate authorization policies are defined and attached to the certificates.

After desired policy attachment to the certificate, it is attached to a virtual thing and is copied onto

its corresponding physical device along with its associated private and an AWS root CA certificate.

The CA certificate specifies the identity of the server, viz., AWS IoT server in this case. A device

certificate is used during device authentication and specifies its authorization based on attached

policies. The lights and thermostat devices are simulated using AWS SDKs (Node.js) [6] provided

by AWS, and sensors are simulated as MQTT clients using MQTT.fx tool [22]. All these de-

vices use MQTT protocol to communicate to the AWS IoT service with Transport Layer Security

(TLS) [28].

Based on the use case scenarios, the rules engine, a part of the AWS IoT platform, is utilized to

define rules and trigger desired actions. The actions include a Lambda function and notification to

77

Figure 4.4: Smart-Home Use Case Scenario 1

users by sending text messages through Amazon Simple Notification Service (SNS). For each rule,

an IAM “role" is associated with it to authorize the rule to access required AWS and AWS IoT

services and resources.

4.2.2 Use Case Scenarios

This section discusses two scenarios of the use case and their relevant authorization aspects.

A. Scenario 1: This scenario involves a temperature sensor and a thermostat and is depicted

in Figure 4.4(a). A temperature sensor Sensor_2 (shown in solid oval) senses the tempera-

ture and sends data to its thing shadow, Sensor_2 (shown in dotted oval), in the AWS IoT

platform. Based on Sensor_2 data, a rule (Rule1) triggers a lambda function to change the

state of the Thermostat by publishing an update message to its thing shadow (shown as the

dotted oval). If the environment temperature is greater than 78 degrees Fahrenheit, then the

rule invokes a lambda function that publishes a message on Thermostat thing shadow to turn

on the thermostat and set its temperature to 72 degrees Fahrenheit. The physical thermostat

(shown in solid oval) has subscribed to its shadow topics, hence, receives the update message

and syncs its state with its thing shadow. For this scenario, a simple authorization policy is

defined for both Sensor_2 and Thermostat, as shown in Figure 4.4(b). It allows an entity

78

Figure 4.5: Smart-Home Use Case Scenario 2

to do any IoT operation (e.g., publish, subscribe) on any resource within a specific account

and selected region in the AWS cloud. The policy is attached to the X.509 certificates which

are copied onto the corresponding physical IoT devices (Sensor_2 and Thermostat). In this

example, the physical devices have full IoT access on all the resources in AWS IoT.

B. Scenario 2: A more comprehensive scenario with a fine-grained authorization policy is

presented in Figure 4.5. A light sensor, Sensor_1, monitors the light level of the environment

and turns on outdoor lights, Light_1 and Light_2, when the light level is low. When the lights

are turned on, users (owner or resident) of the home get a text notification about the state

change of the lights. For this scenario, a more restrictive policy is defined for Sensor_1 which

utilizes thing attributes in the Condition section of the policy. The policy is shown in Figure

4.5(b), and comprises two policy statements—first to authorize a client to connect to AWS

IoT only if its client ID is Sensor_1, and second to allow IoT publish, subscribe, and receive

operations on all resources only if the client requesting access has a thing attribute Belongs

with a value Home1. This policy employs thing attributes in making access control decisions.

Thing attributes, as shown in Figure 6.6, represent the characteristics of IoT things/devices.

Currently, AWS IoT policy supports thing attributes of only those clients (devices/things)

which are requesting access to resources in the AWS IoT service. A useful scenario would be

79

Figure 4.6: Lambda Function with ABAC Policy (Code Snippet)

to utilize the attributes of target resources on which IoT operations are performed. Suppose,

a user wants Sensor_1 to be able to publish data only on those lights which have an attribute

Location = {Outdoor}. Currently, the AWS-IoTAC model cannot incorporate the attributes

of target things/devices in IoT policies. This scenario, however, can be realized employing

rules and lambda functions as illustrated in the following. The code snippet of the lambda

function is presented in Figure 4.6. Here, first a search for things that have an attribute key

and value is performed (e.g., Location = Outdoor), and a list of such things is obtained,

i.e., Light_1 and Light_2 in this use case. Once the list is obtained, a message (in JSON

format) to turn on the lights is published to their shadow update topic, as shown in Figure

4.6. The physical light bulbs receive the update message and change their states. As soon as

the device state changes, a text message notification is sent to a user specified in the rules,

Rule_2 and Rule_3, through the AWS Simple Notification Service (SNS).

4.3 ABAC Enhancements to the AWS-IoTAC Model

This section discusses the available attributes in AWS IoT and their nature compared to real ABAC

attributes. It then proposes the attributes required in AWS IoT to support a full form of ABAC pol-

icy and proposes some ABAC enhancements to the AWS-IoTAC model for enhancing the access

control flexibility in AWS IoT. In a typical ABAC model, attributes of the users (actors), who

are requesting access, and attributes of the resources (target objects), on which accesses are per-

80

Figure 4.7: Attributes in AWS IoT

formed, are utilized in the access control policies to determine allowed permissions on objects. The

attributes in ABAC are name-value pairs and represent characteristics of entities, such as users and

objects. Often environment or system attributes are also brought into consideration. In AWS IoT,

things can have a set of attributes. The attributes are defined for virtual things in the cloud and are

synchronized with their associated physical devices.

4.3.1 Attributes in AWS IoT

An example of thing attributes is shown in Figure 4.7(a). Another way a thing can get attributes is

through the certificate attachment or association as shown in Figure 4.7(b). Some attributes are set

and defined while creating an X.509 certificate, and when a certificate is attached to a thing, then

the attributes of this certificate can be used in AWS IoT policies to assign permissions to the things.

However, a certificate attribute does not reflect any direct properties of the thing it is attached to

and is thereby different than typical ABAC attributes.

Therefore, the access control model of AWS IoT (AWS-IoTAC) can be categorized as a re-

stricted form of an ABAC model, mainly due to the following reasons.

• In AWS-IoTAC model, the attributes of only those IoT things/devices can be utilized which

are requesting to perform actions on IoT resources (other IoT devices or applications) in the

cloud.

• The thing attributes are applied in the policy only if the things/devices are using MQTT

81

protocol to connect and communicate to the AWS IoT service.

• In AWS IoT, currently, a thing can have only fifty attributes, of which only three are directly

searchable.

4.3.2 ABAC Enhancements for AWS-IoTAC

Based on the above discussion and detailed exploration of the AWS IoT service, this dissertation

proposes some enhancements for the AWS-IoTAC model in order to incorporate a more complete

form of ABAC in the model.

1. ABAC Including Attributes of Target Resources

As discussed in the use case scenario 2, the AWS-IoTAC model should be able to incorporate

attributes of things/devices performing IoT operations as well as attributes of things/devices

on which the operations are being performed, independent of the connection and commu-

nication protocol being used. The target resource attributes are mainly useful in isolating

the identity of specific IoT objects. For example, an IoT device needs to publish messages

to other devices which have some specific attribute values. The publishing device need not

be aware of the particular topics it needs to publish to and can publish to multiple topics

meeting some specific criteria, such as conditions in ABAC policies. Similarly, the policies

should be able to incorporate attributes of both the source things and target things instead of

specifying each resource (e.g., MQTT topics) in the policy.

2. ABAC Including User and Group Attributes

A complete form of ABAC would require the inclusion of attributes of users and groups of

users, as shown in 4.7(c). In real-world IoT systems, multiple users are using and controlling

IoT devices. Therefore, including users and devices relationships through their attributes in

access control decisions facilitates fine-grained authorization in CE-IoT platforms.

3. Policy Management Utilizing the Policy Machine

AWS offers a form of policy-based access control based on policy files attached to entities

82

such as users, groups, “roles”, and certificates. For all these entities, there are numerous

policies defined. With billions of devices and their users, the policies for them will scale

tremendously and soon become unmanageable. In the near future, a possible problem that

AWS might encounter is a policy-explosion problem. While setting up the use case as an

administrator, the need for a customer-based policy management tool is realized. Policy

Machine (PM) [51, 52], an access control specification and enforcement tool developed by

National Institute of Standards and Technology (NIST), could be utilized in this context.

However, more detailed analysis of the AWS-IoTAC model with respect to PM would be

required to demonstrate its applicability and feasibility in real-world scenarios.

4.4 Related Work

There has been significant research in IoT access control models, as recently surveyed by Ouaddah

et al. [84]. Many of these models are based on capability-based access control (CAPBAC) [61] and

role-based access control (RBAC) [54, 93], while there are a few utilizing attribute-based access

control (ABAC) [63, 67]. In [59], a centralized CAPBAC model has been proposed based on a

centralized Policy Decision Point (PDP). Whereas, a fully decentralized CAPBAC model for IoT

is presented in [61]. However, a fully centralized or a fully decentralized approach may not be ap-

propriate for managing the access control needs in a dynamic IoT architecture. Mahalle et al. [78]

proposed an identity establishment and capability-based access control scheme for authentication

and access control in IoT. Besides CAPBAC, an RBAC model is used for IoT in [77] where a

thing’s accesses are determined based on its roles. Similarly, Zhang and Tian [114] proposed an

extended role-based access control model for IoT where access is granted based on the context

information collected from system and user environment. These RBAC models for IoT still suffer

from RBAC’s limitations, such as role-explosion [89].

A hybrid access control model (ARBHAC) based on RBAC and ABAC is proposed by Sun

et al. [71] to handle a large number of dynamic users in IoT. Here attributes are used to make

user-role assignments, and then a user’s roles determine accesses on resources or things. This ap-

83

proach is similar to dynamic roles [34,74], where roles are dynamically assigned to users based on

their attributes. However, ARBHAC lacks utilization of user, thing, environment and application

attributes available in more general ABAC models.

The AWS-IoTAC model significantly differs from the existing models discussed above, espe-

cially in its nature of being an access control model developed for a real-world CE-IoT platform

that is managed by the largest cloud service provider, AWS. Another distinguishing feature of this

work is to identify the applicability of user attributes and attributes of IoT things (things/devices re-

questing access to other things/devices, and things/devices on which the access is being requested)

in IoT access control. ABAC is a promising approach to address flexible and fine-grained access

control requirements of the rapidly evolving IoT arena.

84

CHAPTER 5: ENHANCED ACO ARCHITECTURE FOR

CLOUD-ENABLED INTERNET OF THINGS (CE-IOT)

This chapter enhances the recently published ACO architecture by Alsheri and Sandhu [35] moti-

vated by a specific IoT domain, the Wearable Internet of Things (WIoT). Based on the Enhanced

ACO (EACO) architecture, this dissertation develops an Access Control (AC) framework for the

Cloud-Enabled Internet of Things (CE-IoT) to capture different types of accesses and communi-

cations within and between the layers of EACO architecture. The primary objective of the AC

framework is to present a characterization of different kinds of interactions in CE-IoT which in

turn will facilitate in the development of unifying standard access control models focused on spe-

cific interactions in CE-IoT. A remote health monitoring use case in the context of WIoT is also

presented to demonstrate various interactions occurring in CE-IoT along with possible enforce-

ment in a commercial CE-IoT platform, viz., AWS IoT. Finally, it discusses the objectives of the

AC framework and relevant research directions. Major portions of text in this chapter are based on

the following publication [41] with some revisions and modifications.

• Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. An Access Control Framework for Cloud-

Enabled Wearable Internet of Things. In 3rd International Conference on Collaboration and

Internet Computing (CIC), pages 328-338. IEEE, 2017.

5.1 Internet of Things – Devices and Application Domains

Internet of Things (IoT) has given rise to a new wave of technology innovation. It has become a

pervasive and diverse concept in recent years. IoT is an inclusive term in today’s context which

includes various enabling technologies: machine-to-machine (M2M) technologies, Internet, net-

working, communication protocols, cloud and mobile computing, and big data analytics [33]. A

recent IoT architecture shaping the industry today is the combination of Cloud and IoT, with ma-

jor cloud services providers offering IoT services and applications on top of their existing cloud

85

services [16]. The integration of Cloud and IoT has also been studied in the academic litera-

ture [45, 85, 90].

The Cloud-Enabled IoT (CE-IoT) architecture has gained much popularity in industry and

academia recently. Most of the work is focused on either specific applications and technologies

of IoT or state-of-art surveys. This dissertation focuses on access control aspects, mainly autho-

rization and interactions, of the CE-IoT architecture. Securing the CE-IoT architecture involves

security in two vast arenas—Cloud and IoT. A proper characterization of access control require-

ments in the CE-IoT architecture is necessary for its wide adoption and continued success.

Meanwhile, many commercial organizations are employing lucrative business models exploit-

ing IoT and the significant amount of data associated with it. The IoT architectures being used in

these businesses are driven by individual enterprise’s needs and requirements rather than by some

defined standard. On the one hand, it provides flexibility for interested entities to customize their

IoT architecture, however, on the other hand, there is no consensus on a specific IoT framework.

Alshehri and Sandhu [35] have developed an architecture for CE-IoT in general and named it as

the Access Control Oriented (ACO) architecture. This architecture has addressed the inevitable

need of the Cloud in the IoT and has introduced a Virtual Object Layer in the architecture.

The broad range of IoT applications and services has given rise to many sub-fields in the IoT

space. Wearable technology, with its particular set of characteristics and application domains, has

formed a rapidly growing sub-field of IoT, viz., Wearable Internet of Things (WIoT). While numer-

ous wearable devices are available in the market today, aptly addressing the security and privacy

concerns in WIoT are vital factors for wide adoption. Wearable devices are resource constrained by

nature with limited storage, power, and computation. A CE-IoT architecture, a dominant paradigm

currently shaping the industry and suggested by many researchers, needs to be adopted for WIoT.

However, to capture different types of IoT objects and relevant components in WIoT, it is necessary

to enhance the ACO architecture.

This dissertation enhances the ACO architecture from the perspective of WIoT by adding an

Object Abstraction Layer to the four-layer architecture and then develops an Access Control

86

Figure 5.1: A General Classification of IoT Devices

(AC) framework to comprehensively represent various interactions between different layers of this

enhanced ACO architecture. It also presents a general classification and taxonomy of IoT devices,

along with a brief introduction to various application domains of IoT and WIoT. It then presents

a remote health and fitness monitoring use case to illustrate different access control aspects of the

AC framework and outlines its probable enforcement the AWS IoT service. Lastly, it discusses the

objectives of the access control framework with some open problems.

5.1.1 A General Classification of IoT Devices

This section presents a classification of IoT devices based on three key characteristics: mobility,

size, and nature of IoT devices. The classification and taxonomy of smart devices can be used to

represent various sub-fields of IoT, such as Wearable IoT (WIoT) and Vehicular IoT (VIoT). It also

discusses some IoT and WIoT application domains.

The impact of IoT is apparently visible in every aspect of human lives, such as smart homes,

smart cities, offices, hospitals, and businesses. With the disruptive trend of IoT, different types of

smart devices are evolving in the market with “anything” and “everything” being connected to the

Internet. This widening IoT paradigm and increasing number of connected things requires a proper

categorization of IoT devices/things. This categorization provides a holistic view of different types

of IoT devices in the market today and can be extended as they evolve with time.

87

Figure 5.1 shows a general classification and taxonomy of IoT devices. To develop this classi-

fication, three main characteristics: mobility, size, and nature of smart IoT things are considered.

They are defined as follows.

• Mobility: In IoT, the devices inherit the properties of their owners or of the entities to which

they are attached. Mobility is one of the main characteristics that enables identifying the

state of smart things and their capability of movement. This research classifies devices into

two categories: static and mobile. Static things cannot move and are restricted to a specific

location of installation, for example, a smart surveillance camera on a building. Whereas

mobile things are capable of movement, and mobility can be achieved either independently

(e.g., autonomous cars), or dependently (e.g., wearable smart watches) through the device

owners/carriers. Thus, they can be further classified into three categories: autonomous

which are capable of moving independently or with the help of some external agent, portable

which can be carried around, and wearable which can be worn and attached to their owners.

• Size: IoT devices are of different sizes, from a small tiny sensor to big complex machinery.

It is difficult to define definite metrics to categorize IoT things based on the size. However,

for simplicity here, two categories: small and large are considered. For example, any device

that can be easily carried by an individual is a small IoT device, such as small sensors or

wearable devices. Thus, only the small category is shown under portable and wearable.

• Nature: The third characteristic is the nature of things or devices. The nature of IoT devices

depends on their architecture and functionality. Any thing that acts individually to perform a

task is an individual IoT device, and a combination of multiple things that operate together

to achieve a specific functionality is a clustered IoT device. As the name implies, individual

things are made up of a single thing (e.g., a sensor sensing motion), and a clustered device

is a combination of small sensors, such as wireless sensor networks (WSNs) or a smart car

that has multiple sensors and actuators.

Other characteristics, such as technologies used, operating systems, network and communica-

88

tion protocols, can be considered for further enhancing the above classification as required. There

have been other efforts to classify IoT devices. In [73], IoT things are classified into three cate-

gories based on the technology areas—i) attached devices (e.g., RFID1 tags and barcodes attached

to things), ii) sensing and actuating devices, and iii) embedded devices that have embedded pro-

cessors and storage.

Another way of classifying IoT devices is based on communication capabilities resulting in

two categories: gateway devices and constrained devices, where constrained devices are further

classified into three classes: Class 0, Class 1, and Class 2 based on their memory and processing

capabilities [19]. In [70], the authors presented a classification of IoT devices for creating a security

framework based on a comprehensive list of properties, such as power capability, real and non-

real time, communication protocol, bandwidth, and size. Most of these works focus on distinct

technologies used while classifying IoT devices and fall short of providing a general classification

of IoT devices.

Based on various application domains, IoT has started to diverge into different IoT sub-fields,

such as Vehicular IoT (VIoT), Medical IoT (MIoT), and Wearable IoT (WIoT). The objective

of the IoT device classification presented here is to provide an overall general classification of

heterogeneous IoT devices, and above three characteristics are believed to be the most suitable

ones for this purpose. This categorization provides a basis to represent different IoT sub-fields,

where distinct nodes in the tree can be combined to realize these sub-fields. For example, VIoT

would be a combination of autonomous, large, and clustered IoT devices (sensors and actuators).

Similarly, wearable, small, and individual or clustered device categorization can be realized as

WIoT, as well as corresponds to MIoT to some extent. Therefore, this classification will enable

IoT stakeholders, researchers, and businesses to focus on desired IoT sub-fields and associated

security and privacy issues while developing innovative solutions.

1Radio Frequency Identification (RFID) allows automatic identification of things to which they are attached [109].

89

Figure 5.2: IoT Application Domains

5.1.2 IoT Application Domains

In recent years, numerous IoT services and applications are increasingly being deployed and ex-

plored practically in every domain, such as infrastructure, manufacturing, transportation, energy,

as well as in critical domains like military and healthcare. In [37], five main IoT domains were

presented along with their relevant scenarios. Since then IoT has influenced many other application

domains as well and is still expanding.

Figure 5.2 presents some of the application domains being impacted by IoT today with the

possibility of many more to be added. Smart cities, smart homes, and utilities are specific IoT

examples in the infrastructure domain. Smart cities with IoT have been extensively studied [99,

104, 106, 113]. In transportation, RFID toll tags, smart traffic lights and traffic management with

traffic flow data, parking with smart sensors, and mobile ticketing and travel are some IoT scenar-

ios [37,57]. Similarly, numerous IoT services and applications for healthcare have been proposed.

A comprehensive survey by Islam et al. [66] discusses the state-of-art of IoT in health care, along

with various medical IoT devices, services, applications, and use case scenarios.

Other domains like energy employ connected sensors for controlling and managing electricity

usageand other forms of energy (e.g., wind energy, solar energy) for fulfilling the energy require-

ments of the planet efficiently. Meanwhile, retail and logistics are employing IoT for supply-chain

management, moisture sensors are being used to assist in watering plants based on soil moisture

and ultimately improve crop yields, and IoT devices and sensors are utilized to improve efficiency

90

and productivity in smart manufacturing [17]. Sports and fitness, security and safety, and gaming

are some of the other emerging IoT domains, enabled by the wearable technology [29]. Besides

these, the capabilities and benefits of IoT are being explored in many other domains, and soon

enough will be realized in every aspect of our lives.

5.2 Wearable Internet of Things (WIoT)

Wearable Internet of Things (WIoT) is a rapidly emerging sub-field of IoT which has some dis-

tinct application domains. WIoT has already started to revolutionize the health care industry with

numerous wearable devices and applications for monitoring vital body parameters, such as heart

rate, pulse, temperature, blood pressure, blood sugar level, and other behavioral parameters [62].

Some of the examples of wearable devices, enabled by ubiquitous Internet and mobile technology,

are smartwatches (e.g., Apple watch), fitness and health tracking devices (e.g., Fitbit), wearable

health monitoring sensors (e.g., smart glucometer), and wearable smart clothing and accessories

(e.g., smart t-shirts, necklace, bands).

Soon enough, WIoT will occupy one of largest market share among various IoT sub-fields.

There has been significant research on wearable IoT devices and applications, mostly focusing on

health care use cases. These studies are more driven towards the benefits and implementation of

a particular application scenario. Since the wearable devices are directly associated to the users

and collect their physical and behavioral data, user privacy and data confidentiality and integrity

are fundamental issues impeding the success of WIoT. Therefore, the ACO architecture needs to

be enhanced to address users’ data and information security and privacy in CE-IoT.

5.2.1 WIoT Devices and Application Domains

Wearable devices are gaining popularity due to their light-weight nature and their capabilities of

continuously tracking users for improving their quality of life. A wearable IoT device is defined as

one that collects user data, processes and analyzes the data based on some intelligence, and delivers

useful insights to the users [26]. In the context of the WIoT, currently, devices can be classified

91

Figure 5.3: WIoT Application Domains

into three types: In-Body, On-Body, and Around-Body. In-body wearable devices are installed

inside the human body, such as implantable devices (e.g., Pacemaker). On-body wearable devices

are those which can be worn on the body, such as wearable sensors, clothing and accessories,

and other contact-based sensors. Around-body devices are the ones which exist nearby the users.

Generally, they work together with former two types of devices and gather data from users, such

as user environment data, to perform defined functions. These devices on their own would not

be considered wearable devices and are not true wearable devices. They are more like general

IoT devices which work together with wearable devices, for example, a sensor collecting user

environment data (e.g., location) that works with a wearable activity tracker device to perform

some task. [29].

The application domains in this context are evolving, and innovative devices and applications

are being introduced. Figure 5.3 shows the WIoT application domains which are discussed below.

Healthcare is one of the largest application domain of wearable devices today. IoT has many

applications ranging from remote patient monitoring to assistance for chronic disease patients and

elderly population. Wearable technology is the backbone of IoT in healthcare domain. With nu-

merous wearable sensors and devices, the health of patients can be monitored remotely which helps

in managing hospital resources. Wearable medical devices allow the patients to be more indepen-

dent and be better aware of the benefits of a healthier lifestyle. Ambient assisted living is another

application scenario of WIoT [50].

Similarly, in a busy world today, users desire to be active and are utilizing wearable devices for

92

maintaining fitness and a healthy lifestyle. In the realm of sports, it is essential for the players to

track their performance, find their weaknesses and learn how to improve them for achieving their

goals in life. Wearable devices for tracking activity and different body parameters, such as smart

watches and bands, heart rate and pulse monitors, and pedometers, are available in the market

today. The social media platform allows the users to share their data with other users [29].

One of the other important application domains is security. With numerous devices and plat-

forms which a user needs to access, there is a possibility to incorporate user credentials in a wear-

able device. Nymi band [23] is one such wearable device that can be used as a multi-factor au-

thentication device for a user who wears it to authenticate to different applications or services.

Similarly, another unique application domain is safety. There are smartphone applications to track

locations of different things and people. This capability can be easily extended to wearable devices

that would track user location for safety purposes. For example, if there is a natural disaster and

the location of users needs to be traced for rescue operations. Such devices are also beneficial to

the people going on long treks or trips to dangerous places. Some of the wearable safety devices

are discussed in [27].

Gaming is a booming industry where new advanced wearable devices are being designed for

gamers. Virtual and Augmented reality enabled devices are developed to enhance user experience.

Wearable gaming devices, such as head-mounted displays, will soon take over existing gaming de-

vices [29]. WIoT has great potential in these domains, as well as other evolving domains. However,

it needs strong authentication and access control mechanisms to support a huge architecture with

billions of wearable devices and associated big data. A persistent problem in wearable technology

is how to identify a user attached to a wearable device since the device could be intentionally or

accidentally given to an unauthorized user. Authentication based on biometric parameters is an ef-

fective solution in such scenarios. Besides, authorization associated with these devices in a CE-IoT

architecture is another critical issue that needs to addressed with further research.

93

Figure 5.4: Enhanced ACO Architecture

5.3 Enhanced ACO (EACO) Architecture

Many different layered IoT architectures have been proposed in the literature [33,37,86,110,111].

In particular, an access control oriented (ACO) architecture for cloud-enabled IoT is proposed

in [35], as presented in Chapter 2. The ACO architecture has four layers: object layer, virtual

object layer, cloud services layer, and applications layer. Each of these layers encapsulates dif-

ferent entities, associated data, and their access control requirements in the CE-IoT framework. A

detailed description of the ACO architecture has been presented in Chapter 2.

IoT devices, such as wearable devices, are usually resource constrained with limited comput-

ing, storage, and power. Therefore, these devices communicate to a unique device with compar-

atively better storage and computing power, known as gateway devices. These gateway devices

abstract out the heterogeneity at the object level and facilitate pushing the data to a server or a

cloud through the Internet. As mentioned earlier, due to the large amount of data generated by

WIoT, a Cloud-enabled architecture is essential to support WIoT. This section enhances the ACO

architecture [35] for IoT to incorporate different entities, components, and their associated com-

munications motivated by a WIoT scenario.

This research considers the ACO architecture as the most relevant since it has been designed

from an access control perspective and supports the CE-IoT framework. It has four layers: object

94

layer, virtual object layer, cloud services layer, and application layer. In general, these layers

encompass all the aspects of CE-IoT. However, due to the heterogeneity and resource-constrained

nature of wearable devices, there is a need for an abstraction layer which provides a gateway for

the edge devices/things to communicate to the upper layers in the architecture. Therefore, the

ACO architecture is extended by introducing an Object Abstraction (OA) Layer in the context of

Cloud-Enabled WIoT.

Figure 5.4(a) shows the enhanced ACO (EACO) architecture. The OA layer is extended from

the object layer and is comprised of gateway devices, such as smartphones. It has a unique task

to facilitate object to VO communication abstracting all the heterogeneity (network and commu-

nication protocols) involved in the object layer. In the near future, when the edge devices become

more sophisticated, the need for an abstraction layer may be reevaluated. However, the relevance of

EACO architecture also exists beyond WIoT since many IoT devices, besides the wearable devices,

are still resource-constrained with limited bandwidth and networking protocols (e.g., Low-energy

Bluetooth). These devices require a more capable device, such as a gateway, to enable connection

and communication with the Cloud infrastructure. In Figure 5.4(b), various components within

each layer and their interactions are shown for a typical wearable IoT scenario with wearable edge

devices, gateway devices, virtual objects, cloud services, and applications for monitoring and vi-

sualizing the IoT data.

5.4 Access Control (AC) Framework for EACO

Security and privacy in IoT are primary factors that will enable its broad adoption and continued

success at the consumer level. Among the key technologies to achieve the objective of security

and privacy are access control mechanisms. In general, access control requires both authentication

and authorization techniques. However, this research focuses on the authorization mechanisms in

a specific instance of IoT, the WIoT. In order to develop a comprehensive set of access control

models for CE-IoT, an access control framework that captures different types of communications

and data exchange within and among the five layers of the EACO architecture is necessary. The five

95

Figure 5.5: Interactions Between EACO Layers

layers of the EACO architecture encapsulate various entities, such as users, edge objects, gateway

objects, virtual objects, cloud services, applications, and administrators, and these entities further

comprise of other sub-entities. A single access control model would not be sufficient to capture

all the access control requirements of different layers (and their associated entities) in the EACO

architecture. Hence, this dissertation develops an Access Control (AC) framework for controlling

accesses and communications (data exchange) between several entities in CE-IoT.

In the academic literature, many access control models have been proposed for IoT. Ouaddah et

al. [84] extensively discuss access control models developed for IoT. The diverse and dynamic na-

ture of IoT requires a unified access control framework for grouping different types of IoT models

focusing on distinct IoT components and their interactions (access and communication). Figure 5.5

shows the possible interactions associated with two of the EACO layers (Object and OA) explicitly,

where other layers’ interactions follow the same pattern (represented as dots), in the five-layered

EACO architecture. Here, it is assumed that each layer can interact with itself and its adjacent

layers up to two levels in each direction (up and down). For instance, the interactions associated

with the Object layer are: i) with itself (Obj–Obj), ii) with users (Obj–Users), iii) with OA layer

(Obj–OA), and iv) with VO layer (Obj–VO). There are numerous such interactions associated with

each EACO layer where each one of them represents an access and authorization control point in

96

Figure 5.6: Access Control Framework based on Various Interactions in EACO Architecture

WIoT. The access control models addressing these control points are grouped into three categories

of models: i) Object Access Control, ii) Virtual Object Access Control, and iii) Cloud Access Con-

trol, which comprises the Access Control (AC) framework for CE-IoT. Figure 5.6 depicts the AC

framework incorporating all the possible interactions in EACO.

There are two modes of interaction between any two layers of the EACO architecture, first

direct interaction (DI) and second indirect interaction (IdI). For any layer, the DI implies interac-

tion with itself and immediately adjacent layers; and IdI means interaction with the second level

of adjacent layers at top and bottom of that layer. In the figure, DIs are shown as solid ovals and

IdIs are shown as dashed ovals. There are some common interactions between any two category

of models, such as OA–VO, and Obj–VO which belongs to both Object AC and Virtual Object AC

models. This results in the overlap between the AC categories in the framework. The outer admin-

istrative access control circle in the framework represents that admin access control is relevant to

the entire CE-IoT space, and administrative access control models can be designed for each one of

the three AC categories. The interactions between layers of the EACO architecture are mediated

by operational access control models, under configuration and control by administrators. The AC

categories are discussed as follows.

97

• Object Access Control Models: This category of models includes the authorization at the

Object layer and the Object Abstraction (OA) layer, as well as interactions with their ad-

jacent layers (up to two level) in the EACO architecture. The edge IoT devices which are

resource constrained reside at the Object layer, and gateway IoT devices that have sufficient

resources for performing more substantial computation and storage functions reside in the

OA layer. Access control models which focus on communications, and data access and

transfer within and outside these layers can be grouped into this category of models. The

interactions covered in this category are Obj–Obj, Users–Obj, Obj–OA, Obj–VO, OA–OA,

User–OA, OA–VO, and Cloud–OA.

• Virtual Object Access Control Models: The access control models designed for virtual

object (VO) communications among themselves (VO-to-VO), and for interactions with other

layers can be grouped into the Virtual Object AC models. These models focus on interactions

to and from the VOs and encompass three direct interactions VO–VO, OA–VO, Cloud–VO,

and two indirect interactions VO–Apps and Obj–VO.

• Cloud Access Control Models: The cloud services layer allows IoT to leverage its prac-

tically unlimited storage, computation, and analysis capabilities. It provides the flexibility

and scalability needed for IoT [102]. The cloud is capable of hosting many IoT compo-

nents. For example, AWS IoT hosts a device gateway, virtual objects, cloud services, and

cloud applications. Thus, the access control models in this layer are more complex and may

significantly overlap with above two categories. The interactions which need to be secured

here are Cloud–VO, Cloud–OA, Apps–Cloud, Users–Cloud, Cloud–Cloud, Users–Apps, and

Apps–Apps. The applications layer interactions are included within this category of mod-

els, since applications mainly utilize the data stored and analyzed in the Cloud to provide

IoT services to the users. Also, these applications are often Cloud applications with their

application and database servers hosted in the Cloud.

Any access control model developed for CE-IoT can be easily mapped to one of the above three

98

Figure 5.7: Types of Access Control Models

AC categories and may address authorization related to all the interactions (small circles inside a

category) or a subset of the interactions relevant to that category.

5.4.1 Access Control Models

Access control models, in general, can be divided into two types: Operational, and Administrative

models, as shown in Figure 5.7. An operational access control model secures usage of resources

and services in any application or system. It also controls access to the data stored in a system.

Administrative access control models control the access of admin users on resources and entities,

such as create, read, update, and delete, and manage access to policies. Also, typically in any

system, only the admin users have authority to specify and update the access control policies. As

per the AC framework, each of the three categories of AC models for CE-IoT includes respective

operational and administrative models. Role-based access control (RBAC) has been widely utilized

in developing both operational and administrative models for various systems and applications.

In [84], Ouaddah et al. have presented a qualitative and quantitative analysis of access con-

trol models for IoT. As per their study, Capability-Based Access Control (CAPBAC) have been

employed quite often for addressing authorizations in IoT. Moreover, other access control models,

such as RBAC and ABAC, have also been considered. Each one of these has its advantages and

disadvantages concerning the IoT domain. The benefits of CAPBAC are that it is user-driven and

supports delegation; however, it does not consider contextual or environmental information in the

99

system. Whereas, ABAC employs contextual attributes (e.g., location, time, etc.), and user and

subject attributes, and object attributes, but is often policy-driven rather than user-driven [84].

A Virtual Object AC model, addressing VO–VO communication, is developed by Alshehri

and Sandhu in [36]. They developed operational and administrative access control models for

controlling interactions between virtual objects (VOs). For operational models, they utilized access

control lists (ACLs), CAPBAC, and ABAC, and for administrative models, they used ACLs and

RBAC. Their work aligns with the AC framework presented here.

This dissertation developed an access control model for AWS Internet of Things, known as

AWS-IoTAC [40], which has been discussed in Chapter 4. AWS IoT is a CE-IoT platform provided

by Amazon Web Services (AWS) [1]. It controls the communications between several components,

such as devices, virtual objects, cloud services, and applications based on the authorization policies

defined for these entities in the Cloud. The AWS-IoTAC model was developed for a general CE-

IoT platform and is an instance of ABAC to some extent, with policy-based access control as its

core. This model fits into the Cloud AC model category of the AC framework and captures the

interactions between cloud services and IoT entities.

Some of the suitable models to support the properties of CE-IoT in the context of WIoT will

be influenced by ABAC and ReBAC, together with combining benefits of other models, such as

CAPBAC. ABAC models are capable of incorporating the attributes of the users of wearable de-

vices and relevant contextual attributes, such as the location of the users. The attributes of devices

should also be considered in the access control model. Similarly, ReBAC models can be used to

capture the relationship between users and objects in the context of wearable devices. For de-

veloping administrative models, RBAC provides great flexibility and administrative capabilities.

ABAC is another suitable model for controlling admin authorization and functions. An admin-

istrative model for the hierarchical attribute-based model (HGABAC) [101] is developed in [58].

Influenced by such models, administrative models for operational WIoT models can be developed.

These are some of our initial insights; however, more concrete access control models for CE-IoT

concerning WIoT require further research.

100

Figure 5.8: A Remote Health and Fitness Monitoring Use Case

5.5 Remote Health and Fitness Monitoring Use Case

Figure 5.8 shows a remote health and fitness monitoring (RHFM) example within the EACO ar-

chitecture. This use case discusses the access control points along the EACO layers and how they

map to the three categories of models in the AC framework. Alice has a problem of high blood

pressure and uses wearable technology to monitor her health and overall fitness. At the Object

layer, there are four wearable devices—a motion sensor, a heart rate and pulse sensor, a blood

pressure sensor, and a temperature sensor, which Alice uses to measure relevant body parameters.

These devices communicate to a gateway device (Alice’s smartphone) at OA layer, which allows

interaction with the upper layers of the architecture. OA layer provides an initial access control

point where user-centric privacy policies can be deployed. It could also be used as a point to em-

ploy edge computing in the architecture. For each wearable device, there is a corresponding virtual

object (one-to-one association) at the VO layer. VO layer facilitates seamless communication be-

tween applications and physical devices and addresses several IoT issues, such as identification,

scalability, heterogeneity, security, and privacy [36].

The vast amount of IoT data collected by these devices is stored and analyzed in the cloud

services layer. There are two data storages in the cloud, one for Alice’s Primary physician and

101

Figure 5.9: A Sequential View of RHFM Use Case

second for her Specialist physician. All the data is by default stored at her Primary physician’s

data storage. Alice’s information is securely shared with the Specialist physician only when the

need arises, for example when the Specialist or Alice request it to be shared, or in some emergency

situation. Data security and privacy should be maintained based on trust established between the

two physicians with user consent. Access control and privacy policies for any access control model,

designed for either secure communications or data security and privacy, can be defined at the Cloud

services layer as an Authorization service. The Cloud with ample resources also enables Big Data

Analytics in WIoT. The analyzed data is then utilized by the Health Monitoring applications to

show meaningful results to the physicians at the Application layer.

The interactions within and among different layers need to be authorized. For example, the

edge wearable devices associated with a particular user must communicate with an authorized

gateway device. Similarly, the gateway device must uniquely identify and authenticate the edge

devices and allow authorized communication and data exchange with respective virtual objects.

The access control models which would address such authorizations at the Object layer and OA

layer and among their adjacent layers are a part of Object AC models. This use case assumes

that the wearable devices do not communicate with each other. However, a possible scenario

of communication between physical objects is WSNs, where each node can talk to every other

102

node in the network. Correspondingly, appropriate models addressing authorizations associated

with virtual objects need to be developed. The Virtual Object AC models, as in [36], control

access to virtual objects and relevant topics/channels in a publish/subscribe model. The Cloud AC

models comprise models designed for controlling access within, and to and from cloud services

and resources, as well as access control models developed for securing data in the cloud, and for

enabling secure collaboration and data sharing between tenants, accounts, or multiple Clouds.

Figure 5.9 depicts a sequential representation of the use case. Alice uses four wearable devices—

a motion sensor, a heart rate and pulse sensor, a blood pressure sensor, and a temperature sensor.

The devices authenticate and communicate to a gateway device, which sends the collected data to

their corresponding VOs instantiated in the Primary physician’s Cloud. This data and information

are stored in the database, and analysis is performed on it in the Cloud. The health monitoring ap-

plication provides useful insights to the Primary physician based on Alice’s data analytics results.

If everything is normal, the Primary physician sends commands and recommendations to Alice by

sending messages to the devices through the VOs.

Whereas in case of an emergency situation, immediate medical help is sent to Alice, and an

alert (e.g., email or text message) is sent to the Specialist physician based on some predefined rules.

Alice’s data and analytic results are shared with the Specialist physician’s cloud as required based

on established trust and access control policies. The Specialist physician can also send commands

to the edge devices, and schedule a visit for Alice and inform her through the application by

posting updates to the device VOs in Primary physician’s cloud. The gateway device ensures the

delivery of messages sent by physicians to physical edge devices. In this scenario, there is no direct

interaction between physicians or applications. The setup and configuration of the use case would

be done by some administrators (cloud admin, health care admins, etc.) and the user (Alice).

5.5.1 Proposed Enforcement in AWS IoT

This section proposes an enforcement scheme for the above use case in the AWS IoT platform

utilizing its services and functionalities. Previously, in Chapter 4, a smart-home use case is imple-

103

mented in AWS IoT, along with setting up its configurations and authorization policies for VOs,

physical devices, and cloud services. In AWS IoT, a Thing for each wearable device needs to be

created, which is its equivalent VO and has a Thing Shadow that provides a set of topics for clients

(devices, apps) to publish/subscribe messages. For each device, a valid certificate registered in

AWS IoT should be created and copied onto the physical devices. This is a complicated task since

the devices need to be compliant with the AWS IoT protocols and standards.

AWS IoT has a device gateway which enables secure authentication and communication with

edge devices. The idea of employing privacy-preserving policies defined by users or administrators

at the gateway level requires further investigation since device gateway is embedded in the platform

and cannot be accessed by the cloud users, probably due to security reasons. The IoT data gener-

ated can be stored in a DynamoDB database, and desired computation and analysis be performed

utilizing AWS Lambda function. Based on the assumption that physicians use the AWS cloud,

the application server for health monitoring applications would be hosted in the Cloud. However,

in case of a collaborative data sharing scenario, appropriate cross-tenant or cross-account access

control models for WIoT are currently missing in CE-IoT architecture.

5.6 Objectives of AC Framework

This section discusses the objectives of the AC framework for Cloud-Enabled IoT developed in the

context of Wearable IoT and discusses relevant open research problems.

• User-Based Device Authentication: Wearable devices have peculiar characteristics of be-

ing closely related to their owners (who wear them, and whose information they are col-

lecting). Therefore, physical security is of great importance, and also device authentication

mechanisms based on user biometrics are necessary, such as fingerprint and heart rate. This

ensures that even if a wearable device is lost or stolen, an attacker would not be able to com-

prise the data security and integrity. Such techniques for wearable devices are already being

investigated [23], as well as need further research. The users should be able to remotely

manage data stored in the devices, and at the same time, device firmware should be secure

104

enough (e.g., encryption technologies) to protect user data and information.

• User-Centric Data Security and Privacy: Wearable devices are attached to the users and

collect very sensitive data and information that would compromise user privacy if it falls

into an attacker’s hand. Therefore, security practices involving the users are necessary for

preserving data privacy and security in WIoT. It is crucial to include the users whose data

is being collected in the authorization process, not at every step but at least at some initial

point of the authorization and access control process. A recent study conducted on fitness

tracker devices depicts threat to user’s data due to vulnerabilities in the devices and provides

guidelines for better security [9].

• Edge Computing in WIoT: Gateway device at OA layer is an ideal place to provide edge

computing capabilities for constrained edge devices. One of the proposed mechanism of

applying edge computing is cloudlets [96], which can be employed on the device gateways,

such as a laptop or a small server machine at home. Edge computing is necessary for wear-

able devices due to their low bandwidth and low latency requirements which directly af-

fects their usability. Edge computing in wearable cognitive assistance scenarios is discussed

in [95]. For secure edge computing in WIoT, access control models for such scenarios de-

mand significant research.

• Multi-Cloud Architecture: With more than 20 billion connected IoT devices by 2020 [20],

the need for a multi-cloud architecture is inevitable to support IoT. A collaborative data

sharing scenario across two Clouds is considered in above use case, yet appropriate Trust-

based access control models for cross-tenant, cross-account, and multi-cloud architectures

still lack in the context of WIoT.

105

CHAPTER 6: ATTRIBUTE-BASED COMMUNICATION CONTROL

FOR CE-IOT

In the process of enhancing the ACO architecture and developing the Access Control Framework

for CE-IoT, this dissertation identifies the need of communications control models, besides access

control models, in the context of the CE-IoT architecture. In CE-IoT, IoT devices, gateways,

VOs, and multiple Clouds are continuously communicating and sharing data with each other. It

is critical to address security and privacy concerns associated with communication and data flow

by developing secure and flexible communication control models. While access control models

control access to objects by authorized subjects, communication control models are essential to

secure communication and data flow from one component to the other and ensure user privacy in

a system. There has been significant research on access control models; however, there is a lack of

focused emphasis on communication control models in the academic literature.

This dissertation introduces a novel concept of Attribute-Based Communication Control (ABCC)

to secure communications, and data and information flow, and to enforce user-driven privacy poli-

cies in any application or system. It develops a conceptual ABCC model and discusses its basic

components and characteristics along with a comparison with respect to ABAC and its compo-

nents. For securing communication and data flow in CE-IoT, this dissertation develops a formal

ABCC model to control communications between the edge network and the Cloud infrastructure,

known as the ABCC-EC model. This model is demonstrated through a Wearable IoT use case and

a proof-of-concept implementation in AWS using its IoT service (AWS-IoT) and its edge com-

puting service (AWS Greengrass). Finally, the performance evaluation of the proof-of-concept

implementation of the ABCC-EC model is conducted to depict its applicability in a real-world use

case scenario.

106

6.1 Attribute-Based Communication Control (ABCC)

Communication control has been widely studied in the networking domain. In networks, there are

distinct devices and systems, such as routers and firewalls, which control communication occurring

in the form of packets based on some predefined rules and algorithms. A more specific example of

a communication control device or system in information security is a Guard [13]. Guards control

communication from one component to the other in a network. While they have many similarities

to firewalls, they are more secure in maintaining the confidentiality of the information and control

the flow of information based on some defined constraints [13].

For example, a guard deployed between a Top Secret and a Secret network controls the flow of

sensitive data and information from Top Secret to Secret level. Guards are secured trusted compo-

nents mostly with trusted hardware and trusted software, hence ensure security and privacy even

in scenarios where attackers try to compromise the network. They are also similar to a gateway to

some extent in their functionality. The capabilities of guards in maintaining security and privacy

in operating systems are studied and applied in [60].

The approaches and tools for securing communications depend on the communication model

or architecture under consideration. Currently, one of most common communication paradigm

adopted by many IoT platforms is the Publish/Subscribe model (e.g., MQTT publish/subscribe)

which uses topics/channels for communicating messages between two components. One of the

other popular communication paradigms is TCP/IP which allows communication between two

systems. Similarly, another model is Object-Oriented Programming (OOP), where objects com-

municate with each other by sending and receiving messages. Communication control models can

be developed for and applied to any of these communication domains. In general, communica-

tion control has been studied in some domains (e.g., networks). However, communication control

models have not been considered analogous to the access control models in the academic litera-

ture. Moreover, an attribute-based approach has not been applied in the context of communication

control to the best of our knowledge.

In the Enhanced ACO (EACO) architecture for CE-IoT, developed in the previous chapter,

107

Figure 6.1: The Conceptual Attribute-Based Communication Control Model

there are five layers which capture various components of a widely dispersed IoT architecture.

Within and between these EACO layers, there are different types of communications occurring

continuously which need to be secured with appropriate communication control models. This

dissertation proposes a novel concept of Attribute-Based Communication Control (ABCC). There

have been some efforts in securing communication procedures using access control models [47,48].

Similarly, Alshehri and Sandhu [35] have identified the need to control data and communication in

IoT and developed several models to control VO to VO communications using RBAC, CAPBAC,

ABAC and ACLs [36]. However, a general conceptual model for ABCC is yet to be developed.

6.1.1 A Conceptual Model of ABCC

Figure 6.1 shows a conceptual model for ABCC. ABCC has unique characteristics compared to

ABAC. There are two endpoints EndpointA and EndpointB, and a Message is being commu-

nicated between these two endpoints. The endpoints could be devices as routers, such as state-

less/stateful routers and internal/external routers, or systems (computers), or IoT devices. As in an

attribute-based approach, there are attributes assigned to EndpointA and EndpointB which repre-

sents the properties of these endpoints, such as type, owner, etc. The attributes of EndpointA and

108

EndpointB are represented as AAtt and BAtt respectively.

The message is a unique new element which is not a persistent object until an endpoint gener-

ates it or sends and receives it during the communication and data flow process. It is a structured

message (e.g., JSON, XML) that comprises a set of properties. Thus, the message attributes and

their values are derived from these properties within a message rather than being assigned by an

administrator. MAtt represents the message attributes. The properties in the message content,

which are in the form of key and value(s), can be derived as the message attributes. For example,

if the message has a property as temp = 80 where temp is the key and 80 is the value, then it can

be derived as a message attribute temp with value 80.

In ABCC, there is only one operation send-filter, but two instances of this operation depend-

ing upon the sender and the receiver of a message. The send-filter(A → B) represents a send-

filter operation where the sender of a message is EndpointA and receiver is EndpointB. Similarly,

send-filter(B → A) represents the communication from EndpointB to EndpointA, where End-

pointB is the sender and EndpointA is the receiver. In order to secure communication and data

flow, a set of communication control policies are defined by a user or an administrator based on the

attributes of endpoints and messages in a system. For a specific sender, receiver, and a message,

the Communication Control Policy (CCP) function is evaluated to identify if the message should

be sent unfiltered (original message), filtered (removing sensitive information), or should not be

sent from a sender to a receiver. As per the direction of communication, either of the endpoints

can act as a sender or a receiver of a message.

Similar to ABAC, Environment attributes (EAtt) could also be included in CCP to enable

more fine-grained and dynamic communication control based on respective context (e.g., time of

day, location). A simple communication control policy is given as: “if the owner of endpoint

A and endpoint B is the same, then allow the message to be sent from A to B, otherwise deny.”

The CCP function could be defined and be co-located with one of the two endpoints or hosted

in a separate system between two endpoints. In CE-IoT architecture, the data and information

is flowing between several components. For instance, in a wearable IoT scenario, IoT messages

109

Figure 6.2: Attribute-Based Access Control vs. Attribute-Based Communication Control

are communicated between wearable devices, gateways, virtual objects (VOs), cloud services, and

applications. Therefore, the endpoints, the messages, and the direction of communication and data

flow will change according to the type of communication architecture under consideration.

This is a first general conceptual ABCC model presented for controlling communication be-

tween two endpoints based on their attributes as well as message attributes, to the best of our

knowledge. This model is an abstract model and can be shaped into concrete entities and com-

ponents as per the communication paradigm being used in a real scenario. Our proof-of-concept

implementation presented later in the chapter will use the MQTT publish/subscribe model.

6.1.2 ABAC vs. ABCC

In general, access control refers to controlling access (e.g., read, write) to a protected entity (e.g.,

an object, or a subject) from another entity (e.g., a user or a subject) requesting that access on it.

Whereas, in communication control, the communication of a specific element (e.g., message) is

being controlled from one entity (or endpoint) to another. A conceptual ABAC model is shown

in Figure 6.2 (a) and a conceptual ABCC model is shown in Figure 6.2 (b). In ABAC, attributes

of different entities are used to determine allowed accesses on protected data and resources from

110

authorized entities requesting access on them. However, in Attribute-Based Communication Con-

trol (ABCC), the attributes of entities communicating with each other as well as the attributes of

the communication unit, the message, both are taken into consideration while determining if the

communication (data flow) should be allowed or not. While both of these models utilize attributes

of various entities in the system, the units being controlled are distinctly different. In ABCC, the

attributes of the communication unit are used together with attributes of other entities in the com-

munication control policies. Another major difference is that ABAC protects data and information

stored in the system which is static, whereas ABCC secures data and information in motion, such

as data flowing from one entity to the other.

ABCC model is also distinct compared to ABAC since it is responsible for addressing two

major security concerns. First, it identifies if two endpoints should be allowed to communicate

with each other as per their attributes. Second, it controls the flow of data and information from

one endpoint to another endpoint while considering the content of data and information. The basic

components of ABAC are subjects, objects, operations and the authorization function, whereas

the components of ABCC are endpoints, messages, the send-filter operation represented for each

direction of communication, and the communication control policy. Moreover, in ABCC, the end-

points are system entities rather than individuals and represent machines in active states. A user’s

identity can be embedded in the attributes of the endpoints, and the message being communicated

between these endpoints is associated with a specific user.

While ABCC and its capabilities are pertinent to many domains, this dissertation focuses on

ABCC models in relevance to the CE-IoT architecture. It develops a formal ABCC model to con-

trol communications associated with the new Object Abstraction layer of the EACO architecture.

In general, the specific elements and characteristics of the ABCC model depend on the system

they are designed for and are managed by system administrators. For example, in a Linux operat-

ing system, access to objects, such as files and folders, is controlled by defining access control lists

(ACLs) for each user in the system.

111

6.2 ABCC for Edge and Cloud Communication (ABCC-EC)

Internet of Things (IoT), a pervasive concept today, is being applied to every aspect of human lives

from smart home, smart offices, connected cars, smart wearable, smart cities, and many more,

enabling a smart world as a whole. For some IoT domains, especially where the devices are

directly associated with the users, such as in Wearable Internet of Things (WIoT), the data being

collected and analyzed by wearable IoT devices is highly sensitive. Moreover, a user’s privacy is

at risk at all times. For example, in a medical wearable IoT scenario where wearable devices are

collecting a user’s vital body parameters to monitor the user’s health including analyzing this data

to identify current or future health issues and perform some critical actions. Any unauthorized

access to this data or an attacker compromising any of the components in the IoT system could

result in a life-threatening situation.

With a tremendously growing number of smart devices and IoT applications, the concept of

edge computing is widely explored in the realm of IoT architectures in both academia and indus-

try. Concurrently, Cloud computing with a vast range of capabilities, such as storage, network,

computation, and analytics, has become a popular paradigm to support the IoT infrastructure.

In such IoT architecture where edge computing and Cloud computing intersect with each other,

fine-grained and dynamic control on communication and data flow between different components,

especially between the edge network and the Cloud, is necessary for user data security and privacy.

This section develops a novel ABCC model to secure communications between the edge network

and the Cloud in CE-IoT. This model is named as the ABCC-EC model. The real-world appli-

cability of ABCC-EC is demonstrated through a proof-of-concept implementation of a wearable

IoT use case in AWS IoT utilizing its edge computing service, AWS Greengrass [2], and AWS

Lambda functions [4]. A performance evaluation is conducted to determine the feasibility of our

implementation. Some performance enhancement techniques are also discussed and demonstrated.

112

6.2.1 ABCC-EC: Motivation

While Cloud Computing provides an attractive and cost-efficient framework for IoT, a single cen-

tralized Cloud-IoT architecture would not be sufficient. The number of connected IoT devices is

increasing rapidly, and according to Gartner, there will be more than 20 billion connected devices

by 2020 [20]. With so many connected devices, there is a vast amount of data associated and

continuously being generated by them and not every bit of data is always useful or required to

be sent or stored in the Cloud. Therefore, edge computing is necessary for effective IoT where

some amount of computation, storage, and analytics capabilities are moved towards the edge of

the network. Thus, an edge-centric approach in addition to the cloud-centric approach for IoT is

necessary for its continued success in the future. In order to employ the concept of edge computing

and distribute some of the cloud capabilities towards the edge of the network in CE-IoT, there is a

need for multiple small edge clouds.

A new architectural component, cloudlets introduced by Satyanarayanan et al. [96, 97], is a

mobility-enhanced small-scale cloud located at the edge of the Internet which extends today’s

cloud computing infrastructure [96]. The concept of cloudlets can be exploited to apply edge

computing to existing cloud-centric IoT architectures. Using cloudlets in CE-IoT aids the goal of

bringing computation and analytics closer to the edge of the network, where the IoT things reside.

It provides a low-latency and high-bandwidth alternative to a high-latency and low-bandwidth end-

to-end interaction between Cloud and edge IoT things.

• Edge Network of Things and Cloud Infrastructure

With the emergence of edge computing in CE-IoT, security and privacy of IoT communications and

data have become a critical concern for IoT users and fine-grained communication control models

need to be developed for CE-IoT. Figure 6.3 depicts a holistic view of the CE-IoT architecture

mainly divided into two major components: Edge Network of Things and Cloud. The users, the

smart objects and the gateways incorporating the edge virtual objects (EVOs) for each physical

object together form an edge network, which is defined as the Edge Network of Things (ENoT)

113

Figure 6.3: Edge Network of Things and Cloud

in this dissertation. The term Network of Things has been introduced by the National Institute of

Standards and Technology (NIST) [107]. Here, the gateway also acts as an edge cloudlet [98]

which enables edge computing, storage, and other capabilities similar to the Cloud but at a smaller

scale. Being placed at the edge network, a gateway allows to employ communication control and

privacy policies between the ENoT and the Cloud.

The ENoT space is assumed to be a trusted zone since the communication between IoT de-

vices and gateway is secured utilizing X.509 certificates and public and private keys. Devices and

gateways use the certificates and keys based mechanism for authentication purpose to the Cloud.

For authorization, appropriate policy is attached to the certificate which is then installed on respec-

tive devices. These policies allow to send and receive messages between devices and gateways in

ENoT. The messages are raw data being generated by the devices and sent to the gateway, or in

other scenario, messages sent by the gateway to devices. However, the scope of this dissertation is

limited to Edge and Cloud communication.

The Cloud incorporates the virtual objects (VOs) [82] (digital counterparts of the physical

objects), access control policies (ACP) defined by the users and administrators, and databases

and other services (OS) being utilized for analytic and visualization purposes in the IoT system.

114

The ENoT and Cloud architecture shown in Figure 6.3 is consistent with the EACO architecture

shown in Figure 5.4 where the Object Abstraction (OA) layer separates the five layered architecture

into two parts: the edge network and the Cloud. This architecture is an enhanced version of the

Access Control Oriented (ACO) architecture proposed by Alshehri and Sandhu in [35] which is

conformant with other previously published IoT architectures [33, 44, 57, 72, 85, 90]. A detailed

description of the ACO architecture is presented in Chapter 2.

Currently, in most CE-IoT platforms, the smart devices send all the gathered data in the Cloud

by default. This creates a set of vulnerabilities in the IoT network which can be exploited by at-

tackers to execute attacks, such as eavesdropping, inference attack, etc. Therefore, communication

control mechanisms for securing the IoT data plane, especially based on the properties of the data

are inevitable in today’s data-centric CE-IoT architecture. The two main objectives of this research

are as follows.

1. Minimize attack surface: All the data being generated by smart devices is not always useful

or required, and only the required data should be transferred to the Cloud. This minimizes

the attack surface and allows to defend against some attacks. For example, an attacker is

eavesdropping in the network to profile the user and gain her personal information (e.g., age

group, gender, medical condition, etc.) based on its wearable devices data. Since the data

being collected is selective data rather than continuous user data, it defends against such

attacks in the network.

2. Preserve user privacy: User data is highly privacy-sensitive, such as personal information

or behavior patterns, especially in a healthcare scenario. Generally, a user does not have

control over the data being collected by smart devices. Users who would be concerned about

their privacy and intend to protect their data outside of a trusted zone, i.e., their own ENoT,

should be able to define and enforce user-centric privacy policies at the gateway level before

forwarding it to Cloud for preserving their privacy. Moreover, controlling data flow from

edge to Cloud will save a significant amount of network and Cloud bandwidth.

The primary goal here is to enable secure communication and data flow between ENoT to

115

Figure 6.4: IoT Entities and Attributes in ABCC

Cloud, which in simple terms refers to control communication between gateways at edge network

and VOs residing in Cloud as shown in Figure 6.3. For this purpose, we propose a novel Attribute-

Based Communication Control (ABCC) model, the ABCC-EC model, to enable secure and fine-

grained communication of IoT data and information between the edge network and the Cloud in a

CE-IoT architecture. This model includes attributes of different entities (e.g., devices, gateways,

virtual objects), as well as attributes of the communication unit being controlled, i.e., IoT data and

information.

6.2.2 ABCC-EC: Model and Definitions

This section proposes and formally define an Attribute-Based Communication Control (ABCC)

model to secure communications between the ENoT and the Cloud, known as the ABCC-EC

model. In Figure 6.3, the communication between ENoT and Cloud occurs through the gateway

and VO (in the Cloud). In terms of specific components, gateway devices, or simply gateway, in

ENoT is an ideal place to enforce the ABCC model for CE-IoT. Thus, the communication control

policies (CCP) are shown within the gateway cloudlet in Figure 6.3. In the process of developing

the ABCC model, this section first discusses the entities and their relevant attributes of the model

as follows.

116

• Entities and Attributes

As shown in Figure 6.3, there are two major components ENoT and the Cloud. The main goal

here is to control data flow between ENoT and the Cloud, which is through their sub-components

(gateway and VOs), respectively. As discussed earlier, a gateway is a more powerful IoT device

which has comparatively better capabilities than the edge IoT devices. It can also act as a cloudlet

by providing local compute and storage capabilities for the group of devices communicating with

this gateway. It enables the communication and data sharing with the Cloud. The gateway has a set

of attributes (with their values), such as owner = {Alice}, type = {Gateway}, location = {Home},

etc. These attributes represent the characteristics of the gateway.

With the separation of edge network and Cloud, the virtual objects should be identified in two

separate ways, one as Edge Virtual Objects (EVOs) which are encapsulated in the gateway, and

second as Cloud Virtual Objects (VOs) which are present in the Cloud as shown in Figure 6.3. In

the rest of the chapter, Cloud VOs are simply referred to as VOs. The IoT devices communicate

with the gateway which includes EVOs for these devices and in turn facilitates communication with

their VOs in the Cloud. In Cloud, a persistent VO for each edge IoT device exists which represents

the state (current and future desired) of a physical device. Any entity (e.g., devices, applications)

communicating to edge devices through the Cloud will first send messages to the respective virtual

objects which are later forwarded to the appropriate edge devices. There could be different types

of association between the edge devices and the virtual objects as discussed in [35]. This research

considers only the one-to-one object to virtual object association since devices (objects) and virtual

objects are counterparts of each other in different environments. Hence, VO attributes are a subset

of the device attributes. Some of the devices and VO attributes (and their values) are: owner =

{Alice}, type = {Device, VO}, location = {Home, Office, ...}, etc. As gateway is also an IoT device,

it might have some common set of attributes as devices, such as owner, location, etc.

Besides devices and gateway attributes, this research proposes that the IoT message (data or

control message) being transferred from the devices to gateway and gateway to VOs also has

some attributes which can be derived from the content of the message. As shown in Figure

117

Figure 6.5: Attribute-Based Communication Control (ABCC-EC) Model for ENoT and Cloud
Communication

6.4, Message comprises a set of properties, and each property consist of a key and value(s) (e.g.,

heartrate = {75}. The messages are sent or received by devices, gateways, and the VOs. The mes-

sage attributes together with devices, gateway, VO, and environment attributes could be utilized

while defining communication control and privacy control policies in the ABCC-EC model.

• ABCC-EC Model

Figure 6.5 presents the ABCC-EC model for controlling communication and data flow between

ENoT and Cloud. The model is formally defined in Table 6.1. The entities of this model are

Devices (D), Gateways (G), and Virtual Objects (VO). Devices represent a set of IoT devices

and gateways represent a set of gateway devices. Virtual objects are a set of virtual objects defined

in the Cloud for each physical IoT device. Devices and gateways, and VOs and gateways have

a many-to-one relationship, while devices and VOs have a one-to-one relationship. A Message

is an IoT message (data message or control message) being communicated (sent/received) from

one endpoint, a sender, to another endpoint (a receiver). It is the unit of control in the ABCC-EC

model. A single message comprises a set of attribute and value pairs.

Devices, gateways, and virtual objects have a set of attributes, i.e., Device Attributes (DAtt),

Gateway Attributes (GAtt), and VO Attributes (VOAtt). In our ABCC-EC model, since de-

118

Table 6.1: ABCC-EC Model for ENoT and Cloud Communication
I. Core Components and Functions
- D, G and VO are finite sets of IoT devices, gateways, and virtual objects specified in Cloud
respectively.
- M is a set of messages being communicated from one endpoint to another endpoint (gateways,
VOs), where each m ∈ M is the unit of control in any communication. A message m is a set of
attribute value pairs.
- DAtt, GAtt, VOAtt and MAtt are finite set of device attribute, gateway attribute, VO attribute, and
message attribute functions (referred simply as attributes) respectively.
- For each att in DAtt ∪ GAtt ∪ VOAtt ∪MAtt, Range(att) is a finite set of atomic values. The time
is a special message attribute which is in the unbounded space.
- attType: DAtt ∪ GAtt ∪ VOAtt ∪ MAtt → {set, atomic}, specifies the types of the attributes as
set-valued or atomic-valued.

- For each attribute attd in DAtt, attd : D →

{
Range(attd) if attType(attd) = atomic

2Range(attd) if attType(attd) = set

- For each attribute attg in GAtt, attg : G→

{
Range(attg) if attType(attg) = atomic

2Range(attg) if attType(attg) = set

- For each attribute attvo in VOAtt, attvo : V O →

{
Range(attvo) if attType(attvo) = atomic

2Range(attvo) if attType(attvo) = set

- For each attribute attm in MAtt, attm : M →

{
Range(attm) if attType(attm) = atomic

2Range(attm) if attType(attm) = set

- OP is a send-filter operation that allows a sender to send filtered messages to a receiver as defined
below.
II. Communication Control Policy
- PLF is a set of parameterized propositional logical formulas with formal parameters s, r, m
where s ∈ G ∧ r ∈ V O or s ∈ V O ∧ r ∈ G defined by the policy language in Table 6.2.
- A string plf(s, r,m) ∈ PLF is evaluated for actual parameters sen, rec, msg denoted as
plf(sen, rec,msg) by substituting attribute values of sen, rec, msg in the logical formula and
returns True or False.
- For a message m = {attm1 = v1, attm2 = v2, ..., attmn = vn}, a filtered message on message
attributes MAtt’ is defined as: mfilterMAtt′

= {attmi
= vi | attmi

= vi ∈ m∧attmi
∈MAtt′} such

that MAtt’ ⊆ MAtt.
- Communication Control Policy:
• CCPsend−filter ⊆ PLF × MAtt, is a set of pairs each comprising of a string of a logical

formula and a subset of message attributes.
•A specific CCP defined as per the CCPL in Table 6.2 is evaluated using the following algorithm.
CCP_Evaluate(s, r,m){
m′ = φ
for each (plf(s, r,m),MAtt′) ∈ CCP

if plf(s, r,m) then
m′ = m′ ∪mfilterMAtt′

end}

119

Table 6.2: Communication Control Policy Language (CCPL)
The communication control policy language (CCPL) consists of strings which are individually
referred to as plf(s, r, m) that denote a parameterized propositional logical formula with formal
parameters s (a sender), r (a receiver), m (a message) and return True or False, defined as per
the following grammar.
• γ ::= γ ∨ γ | γ ∧ γ | (γ) | ¬γ | ∃x ∈ set.γ | ∀x ∈ set.γ | set4 set | atomic ∈ set |
atomic /∈ set | atomic ♦ atomic
• 4 ::= ⊂ | ⊆ | * | ∩ | ∪
• ♦ ::= < | = | ≤
• set ::= atts(s) | attr(r) | attm(m), for s ∈ G∪V O, r ∈ G∪V O, atts ∈ GAtt∪V OAtt,

attr ∈ GAtt ∪ V OAtt, attType(att) = set
• atomic ::= atts(s) | attr(r) | attm(m) | value for s ∈ G ∪ V O, r ∈ G ∪ V O,

atts ∈ GAtt ∪ V OAtt, attr ∈ GAtt ∪ V OAtt,
attType(att) = atomic

vices and VOs are the representation of physical IoT objects in physical and virtual environment

respectively, the attributes defined for these entities are same. However, this may not be true in

every scenario. An attribute is a function that takes an input (device, gateway, or virtual object)

and gives a specific value or set of values as output from its range based on the type of attribute,

i.e., atomic-valued or set-valued. The range of attributes is a finite set of atomic values. These

attributes represent the characteristics of specific entities and are assigned by an administrator.

Whereas, the Message Attributes (MAtt) are contained within the message and are derived based

on its content. Each message is a set of attributes and their values. Among message attributes,

time is a unique attribute which represents the time a message was sent or received, and its range

is not finite since time is in the unbounded space. Here, we assume the properties of a message

are known to an administrative entity (e.g., a user, a system administrator). The specific structure

and properties of the message (e.g., JSON, XML) depends on the entities and the implementation

platform.

The attributes are of two types: set-valued and atomic-valued. In set-valued attribute, a set of

values are assigned to an attribute, while in an atomic-valued attribute, the attribute has a single

value. There is only one operation send-filter with two instances of it representing the direction

of communication left-to-right or right-to-left. The send-filter operation from the gateway to VO

120

is represented as send-filter(G→ VO), and from VO to gateway as send-filter(VO→ G). A set of

parameterized propositional logical formulas is denoted as PLF where each plf ∈ PLF is defined

as per the Communication Control Policy Language (CCPL) given in Table 6.2.

A plf for a sender s, a receiver r, and a message m is denoted as plf(s, r, m) where s ∈ G ∧ r ∈

V O or s ∈ V O ∧ r ∈ G and m ∈ M , and is evaluated to True or False by substituting ac-

tual parameters for s, r, and m and their attribute values in the logical formula. For example,

plf(g:G, vo:VO, m:M) ≡ gowner(g) = owner(vo) ∧ temp(m) > 102 where gowner ∈ GAtt,

owner ∈ VOAtt, and temp ∈ MAtt, is evaluated to be True if the attribute values for gowner of

g and owner of vo are same and temp value for m is greater than 102 degrees Fahrenheit, else

False. Correspondingly, a message filter for message m (a set of message attributes and values)

on message attributes MAtt’ is denoted as mfilterMAtt′
and is a set of message attributes attmi

and

their values vi such that {attmi
= vi} ∈ m and attmi

∈ MAtt’. For instance, consider a message

generated by a NEST light bulb, m = {color = Red, mode = On, manufacturer = NEST}. For

MAtt’ = {color, mode}, mfilterMAtt′
(m) = {color = Red, mode = On}, therefore, the filtered mes-

sage m’ contains the message attributes color and mode in MAtt’ and their values. If MAtt’ = MAtt,

then mfilterMAtt′
(m) = m which represents an unfiltered (original) message. If MAtt’ = φ, then

mfilterMAtt′
(m) = φ which means all the message attributes are filtered and the filtered message is

empty or null.

The Communication Control Policy (CCP) for the send-filter operation is a set of pairs of

propositional logical formula string plf ∈ PLF and a subset of message attributes and is denoted

as CCPsend−filter. For a specific sender s, receiver r, and message m, the communication (and

privacy) control policies are defined as per the policy language given in Table 6.2. It is evaluated

as per the algorithm presented in part II of Table 6.1. For each policy tuple in CCP, the CCP

function takes a sender s, a receiver r, and a message m as input and evaluates the plf included in

CCP for s, r and m by substituting their attribute values in the logical formula. If plf is True, then

the message m should be sent from a sender s to a receiver r with message attributes included in

MAtt’. An example to depict the policy evaluation is as follows.

121

Suppose there is a user Alice who has a wearable IoT device with attributes owner, type that

measures her heartrate and temperature. Thus, the message generated by the device has two mes-

sage attributes heartrate and temp and their obtained values from Alice. This device communicates

to a gateway g having attributes gowner, type which in turn communicates with the VO vo in Cloud

that has attributes owner, type. Here, for controlling communication from the gateway to VO, there

are two CCP policy tuples:

• CCPsend−filter(G→V O)(plf(g:G, vo:VO, m:M), MAtt’), where

plf(g,vo,m) ≡ gowner(g) = owner(vo) ∧ heartrate > 105, and MAtt’ = {heartrate}.

• CCPsend−filter(G→V O)(plf(g:G, vo:VO, m:M), MAtt’), where

plf(g,vo,m) ≡ gowner(g) = owner(vo) ∧ temp > 102, and MAtt’ = {temp}.

Here, for gateway g, VO vo, and message m = {heartrate = 110, temp = 104}, both tuples are

satisfied and a union of message attributes in MAtt’ is included in the filtered message m’ along

with their actual values, and is allowed to be sent from g to vo. A detailed use case for ABCC-EC

is presented in the following section.

In the ENoT, there is a many-to-one association between the devices and the gateways. The data

collected from the devices is sent to the edge virtual objects encapsulated in the associated gateway.

Then, the gateway enables communication between devices and Cloud virtual objects (VOs). The

device to gateway interaction occurs within the ENoT, or from an EACO architecture perspective,

between the object layer and the OA layer and is considered to be outside the scope of this model.

The ABCC-EC model considers that the communication between devices and gateways is secured

through a tight coupling between them using X.509 certificates and keys, and authorization policies

attached to these certificates. Therefore, the CCP function between devices and gateways is shown

as grey color in Figure 6.5. In AWS IoT, there is a robust certificate and keys based coupling

between devices and gateway. However, the CCP function between gateways and VOs secures the

data flow and enforce user-centric privacy policies between edge network and Cloud. The ABCC-

EC model is defined within a single Cloud architecture. However, the model could be extended

122

Figure 6.6: A Wearable IoT Use case in CE-IoT Architecture

to secure multiple gateways and multi-Cloud interactions. The enforcement of the ABCC-EC

model in a CE-IoT platform is depicted through a remote health monitoring use case and a proof-

of-concept implementation in AWS IoT using AWS Greengrass, which will be discussed in the

following sections.

6.2.3 Use Case

This section illustrates the application of the ABCC-EC model within a wearable IoT use case in

CE-IoT. Figure 6.6 depicts a Remote Health Monitoring (RHM) use case scenario. Within this use

case, various components interact with each other by requesting access and exchanging messages

to perform distinct tasks. Here, a user Alice and her physician both are monitoring her health data.

The physician perspective is more detailed and focuses on Alice’s health, existing conditions, and

probable health risks or emergency situations, in case if critical conditions occur. Whereas, Alice

wants to track her health and fitness in a general way. She prefers to be in charge of her data and is

more concerned about her data privacy.

Alice has a wearable devices Heartrate-Temp sensor which senses her heartrate, temperature,

and her location. This device is connected to a gateway device, shown as Gateway in Figure 6.6.

The user, the device, and the gateway form an edge network. The edge network is connected to

123

a Cloud where a persistent representation of the physical IoT device, i.e., VO for Heartrate-Temp

sensor, is created. The gateway receives messages (data or control messages) from Heartrate-

Temp sensor and in turn sends them to its virtual object in the Cloud. The data is then stored in the

databases and is processed/analyzed as required in the Cloud. For example, predictive analysis can

be performed on Alice’s data to find future risk areas, such as heart condition or stroke probability.

This data could be used by specific applications which allow the user and the physician to track,

visualize, and monitor Alice’s health. Users and physicians can define some specific rules or con-

ditions, and if these conditions occur, then they receive an alert or notification (e.g., text message,

email).

In the Cloud, we created a VO for the Heartrate-Temp sensor as shown in the dashed oval.

The wearable device and gateway must be authenticated and authorized to communicate with the

Cloud and use its services. We implement this use case in the AWS IoT platform and utilize

their certificate infrastructure (e.g., X.509 Certificate) and authorization policies for this purpose.

X.509 certificates, keys, and access control policies authenticate device and gateway, enable secure

communication between device and gateway, as well as allow gateway the permissions to use

Cloud resources. Hence, the certificates and access control policies are shown inside the Cloud in

the figure. Here, the gateway enables edge computing capabilities, such as local communication,

storage, and computation. However, to overcome its constraints, it needs to communicate with a

centralized Cloud and store required data and information in the Cloud and also use other Cloud

capabilities. All the devices communicate with the gateway device which correspondingly sends

and receives data and information to and from Cloud VOs.

In this scenario, only the authorized gateway should be allowed to exchange the device’s data

with specific VO in the Cloud. This is achieved by employing ABCC-EC policies which enable

secure communication between gateway and VO and address user privacy based on the gateway,

VO, and message attributes as in the ABCC-EC model. The physician monitoring the patient is

only interested in tracking those values which are higher than some defined threshold value, for

example, the physician want to specify a policy where heartrate and temperature sensor data flow

124

Table 6.3: WIoT Use Case in the ABCC-EC Model
I. Core Components and Functions
- DAtt = VOAtt = {owner, type, wearable}, GAtt = {gowner, type}, MAtt = {heartrate, temp,
location}.
- OP = {send-filter}.
- U is a set of users in the system.
- Range(owner)= Range(gowner)= U.
- Range(type)= {Thing, Gateway}.
- Range(wearable) = Boolean.
- Range(heartrate) = {1 - 200}.
- Range(temp) = {50 - 150}.
- Range(location) = {Home, Office, Other}.
- attType(owner)= attType(gowner)= attType(type)= attType(wearable) = attType(heartrate)
= attType(temp) = attType(location) = atomic.
- Thus, owner : D ∪ VO → U, gowner : G → U, type : D ∪ VO ∪ G → {Thing, Gateway},
wearable : D ∪ VO → Boolean, heartrate : M → {1 - 200}, temp : M → {50 - 150},
location : M→ {Home, Office, Other}.
II. Communication Control Policy
- CCPsend−filter(G→V O)(plf(g:G, vo:VO, m:M), MAtt’), where plf(g,vo,m) ≡ gowner(g) =
owner(vo) ∧ heartrate ≥ 110 ∧ temp ≥ 102, and MAtt’ = {heartrate, temp, location}.
- CCPsend−filter(G→V O)(plf(g:G, vo:VO, m:M), MAtt’), where plf(g,vo,m) ≡ gowner(g) =
owner(vo) ∧ heartrate < 110, and MAtt’ = {heartrate, temp}.
- CCPsend−filter(G→V O)(plf(g:G, vo:VO, m:M), MAtt’), where plf(g,vo,m) ≡ gowner(g) 6=
owner(vo), and MAtt’ = φ.

to the VO in Cloud only when the data matches the specified condition, e.g., “heartrate is greater

than 80.” Similarly, Alice is concerned about her privacy and does not wish to share her location

information at all times. To enforce such policies, the message attributes in ABCC-EC can be

employed while defining the communication control policies. Such communication and privacy

control policies can be easily applied at the gateway level utilizing the ABCC-EC model.

Table 6.3 presents the use case scenario with a device, VO, and gateway attributes, and spec-

ified ABCC-EC communication control policies. This use case has been implemented utilizing

AWS Cloud and its IoT, edge computing and other services. Here, the device (Heartrate-Temp

sensor) and its VO has same attributes: owner, type, and wearable which represents their owner,

type of device (thing or gateway), and if its a wearable device. Similarly, the gateway has gowner

(gateway owner) and type attributes. The message has three attributes: heartrate, temp, and lo-

125

cation. The range and attribute type of the attributes are presented in part I of the table. The

communication control policies are defined in part II and are evaluated for actual parameters and

their attribute values to allow or deny data flow from the gateway to the VO. The first CCP rep-

resents a critical scenario where heartrate and temperature of the user are higher than the normal

values. For instance, the user wants the location attribute in the message to be shared with the

external network, i.e., Cloud, only in emergency situations. Thus, none of the message attributes

are filtered in MAtt’, and unfiltered message m is sent from a gateway g to VO vo. In the second

CCP, in a normal scenario when heartrate is normal, a user wants to filter the location attribute in

the message flowing from edge to Cloud. Lastly, if the owner of vo and g is not the same, then the

message should not be sent. Hence all the attributes in the message are filtered.

Other example scenarios could be when the user or the physician would not require to get

updates from the devices (e.g., at a certain time or location, or if the physician is on vacation). Such

scenarios can be defined formally and implemented in real-world platforms. A proof-of-concept

implementation of the ABCC-EC model within the scope of the use case defined in Table 6.3 is

presented in the next section. Besides, for any use case, the entities, relations, and authentication

and authorization schemes depend on the application platform where it is being implemented and

can be adapted accordingly.

6.2.4 Implementation

This section presents a proof-of-concept implementation of the ABCC-EC model in the context of

the remote health monitoring use case presented in the Use Case section. It discusses the enforce-

ment architecture and demonstrates the use case scenario defined in Table 6.3. The application

platform used for the implementation is Amazon Web Services (AWS) including a variety of its

services, mainly its IoT and edge computing services, viz. AWS IoT and AWS Greengrass.

126

Figure 6.7: Implementation Architecture Utilizing AWS IoT and AWS Greengrass

• Enforcement Architecture

The enforcement architecture comprises AWS Cloud and its services which are utilized to develop

different components of the use case and enforce the ABCC-EC model. Figure 6.7 shows the

enforcement architecture for ABCC-EC utilizing the AWS Cloud, AWS IoT, and AWS Greengrass

services. An active AWS account is required to set up the implementation architecture. The IoT

device is simulated using the AWS SDKs, mainly AWS Python SDK [5] is used. For each device,

a virtual thing is defined in AWS IoT using its web management console and with each thing is

an associated thing shadow (or device shadow) which provides a set of MQTT topics (channels)

to interact with the device shadow. The virtual things (Cloud VOs) in AWS IoT are represented as

Device Shadows in Figure 6.7.

In this work, the focus is to secure communication and data flow from a gateway to VO. How-

ever, to address access control requirements and communication control between devices and gate-

ways, we utilize the existing security mechanism in AWS. For each physical IoT device, there

needs to be specific X.509 certificate created and attached to the thing in AWS IoT. Then, the

certificate (with private key) is securely copied onto the physical device. The certificates are used

for authentication purpose, while authorizations are managed by IoT policies defined based on the

requirements and attached to a respective certificate to enforce it on the associated device. AWS

127

Figure 6.8: IoT Policy for Greengrass Core

IoT provides the capability to define attributes for IoT devices; however, only 50 attributes can be

defined for each thing. The detailed description of the access control mechanisms in AWS IoT is

discussed in Chapter 4 which also presents a formal AWS-IoT access control model, known as the

AWS-IoTAC model [40].

A relatively new component of this architecture is the AWS Greengrass Core. AWS Greengrass

is a new service recently introduced by AWS to provide local computation and communication

capabilities for IoT devices towards the edge of the network. As per AWS, it is described as [30]:

“AWS Greengrass is software that extends AWS cloud capabilities to local devices, making it pos-

sible for them to collect and analyze data closer to the source of information, while also securely

communicating with each other on local networks.”

The AWS Greengrass is a service in the AWS IoT. There is a concept of a Greengrass group

in AWS which comprises a Greengrass core and a set of IoT devices associated with this group.

The AWS Greengrass core is also an IoT device and has a thing and thing shadow defined for

it. Therefore, we can define attributes for Greengrass core in AWS IoT. Similarly, a certificate

and policies are also attached to the core device. An access control policy created by default for

Greengrass core device during its set up in AWS is presented in Figure 6.8. It gives permission

to the core device to perform all iot and greengrass actions on any resource in AWS. Currently,

the MQTT communications associated with the Greengrass is enabled through a subscription table

where a source, a target, and a MQTT topic is specified. It allows a source (e.g., device, Cloud,

128

Lambda) to forward MQTT messages on a specific topic to a target (e.g., device, Cloud, Lambda).

However, it does not enable attribute-based control as well as does not include message content

level control. In the context of this research, the AWS Greengrass core acts as the gateway device.

It provides an interface between the edge devices and the Cloud infrastructure and includes edge

computing capabilities similar to a cloudlet in the AWS CE-IoT architecture.

The local computation is enabled through another AWS service, i.e., AWS Lambda func-

tion [4]. The AWS Lambda service allows the users (or customers) to define customized programs

as Lambda functions in the service which can be programmed (in supported languages Python,

JAVA, Node.js) to achieve the desired functionality. It requires proper authorizations to be con-

figured using IAM roles and policies so that these functions have necessary permissions to act

on AWS services and resources [4]. The customized Lambda functions are deployed in the core

device (gateway) to enforce ABCC-EC policies between the gateway and virtual things (VOs) in

AWS IoT. Therefore, the AWS Greengrass core acts as the Policy Administration Point (PAP), Pol-

icy Decision Point (PDP), and Policy Enforcement Point (PEP) for the ABCC-EC model. Since

the device information and attributes are defined in the Cloud, the AWS IoT acts as Policy Infor-

mation Point (PIP) for communication control policies. The Greengrass core device is simulated

as an AWS compute instance (EC2 virtual machine).

• Enforcement of ABCC-EC Enabled Use Case

This section discusses the enforcement details of the ABCC-EC use case presented in Table 6.3.

It is enforced utilizing the architecture shown in Figure 6.7. Here, Alice owns the wearable

Heartrate-Temp Sensor which continuously collects her heartrate, temperature, and location data.

A Heartrate-Temp Sensor device is programmed in Python using AWS Python SDK, and a thing

shadow (VO) for it is defined in AWS IoT which receives the device data through the gateway.

The gateway is built as a Greengrass core device using Greengrass software. The Heartrate-Temp

Sensor is connected to the core device and sends messages to it. The Greengrass core device re-

ceives the messages from the sensor and sends them to its Cloud VO. The ABCC-EC policies are

129

Figure 6.9: Sequence Diagram for ABCC-EC Policy Evaluation

specified in a Lambda function which is deployed in the Greengrass core.

We defined attributes for the sensor, its VO, and the core device in AWS IoT. Sensor and its

VO attributes are {owner, type, wearable}. Here, the owner is an atomic attribute since only a

single user can own a wearable device at a certain time, who is Alice here. The type represents the

type of device Thing or Gateway, and wearable is an attribute that represents the boolean value,

if the device is wearable, then the value is True, else False. The Greengrass core has attributes

defined, which are gowner and type. The owner of the gateway is Alice, and the device type is

Gateway. Similarly, the device messages has attributes heartrate, temp, and location. In AWS

IoT, the messages (data or control message) are in JSON format, and different properties (attribute

and value pairs) in the messages can be derived at the Greengrass core device when a message is

received. Based on the attributes of the sensor, its VO, and the Greengrass core device, as well as

the message attributes, the ABCC-EC policies are defined to control the flow of messages (device

data) from Greengrass core (gateway) to device shadow (VO) in AWS IoT.

The first condition in the parameterized logical formula in CCP enforces that “a gateway can

communicate to a VO in Cloud only if the owner of both gateway and VO is same.” The second

condition involves message attributes that can be derived from the message, i.e., “if the heartrate is

greater than or equal to a threshold value, which is 110, and if the body temperature is greater than

or equal to 102.” Therefore, the message is sent with all the message attributes and their values

130

Figure 6.10: Lambda Function with ABCC-EC Policy (Code Snippet)

from Greengrass core to Heartrate-Temp Sensor VO in AWS IoT. Similarly, the second CCP policy

tuple enables a user to enforce privacy policies by removing some sensitive message attributes.

The third policy tuple enforces a strict ABCC policy which states that if the owner of gateway

and VO are not same, then no messages are sent from Greengrass core to sensor VO. Therefore,

ABCC-EC policies defined on gateway and VO attributes along with message attributes enables to

enforce fine-grained communication control and user-specific privacy policies at the granularity of

the message content.

Figure 6.9 depicts a sequence of actions while evaluating the ABCC-EC policies. Whenever

the Greengrass gateway receives a message from a device, a Lambda function with ABCC-EC

policies is triggered which gets required attributes and their values and evaluates defined ABCC

policies to allow or deny to send messages from Greengrass gateway to VO with specific message

attributes. Figure 6.10 shows a code snippet of our Lambda function for this use case where

attributes of involved entities are obtained and then specified ABCC policies are evaluated to make

communication control decisions.

131

Figure 6.11: Device Shadow Update Time

6.2.5 Performance Evaluation

This section presents a performance evaluation conducted on our proof-of-concept implementation

to enforce the ABCC-EC model in AWS IoT and AWS Greengrass. Here, the primary goal is to

evaluate the overhead due to the addition of Lambda function and the ABCC policies specified and

enforced through the Lambda function. In each set of experiments, the time when a message is

sent by a device and received by the device shadow in the Cloud is recorded to calculate the time

taken for edge device to cloud VO communication in different scenarios.

Figure 6.11 represents initial results. The time depicted in the y-axis is the average time in

milliseconds for 20 message update requests sent by the device and received by the device shadow

in AWS IoT. The x-axis represents the message size (i.e., number of properties in a message). The

three bar charts represent different scenarios: first, without a Lambda function at the gateway and

device shadow sync turned on; second, with a Lambda function deployed in the gateway but no

ABCC-EC policies defined; and third, with a Lambda function deployment including specified

ABCC-EC policies. Here, the average shadow update time is lowest when there is no Lambda

function deployed at gateway as expected. The average shadow update time with a Lambda func-

tion not including ABCC-EC policies, though slightly higher, is quite similar to the case with no

Lambda function. However, the average shadow update time with a Lambda function including

ABCC-EC policies is significantly higher than the other two categories.

132

Figure 6.12: Device Shadow Update Time with Attribute Caching

One of the reasons identified for the significant difference between Lambda with no ABCC-

EC policies and with ABCC-EC policies is the round-trip time between the gateway (Greengrass)

and Cloud (AWS IoT) for getting attribute information. Each time a new message was received,

and ABCC policies need to be evaluated the Lambda function request and get attributes for thing

and gateway from AWS IoT. As a solution to this problem, we implemented attribute-caching in

the Lambda function. Therefore, for the first message, the attributes are queried from the Cloud

and then are cached at the Greengrass core. This significantly reduced the round-trip time, and

except for the first message, for the rest of the messages, the policy is evaluated utilizing the

cached attributes and values. A new set of experiments were executed for the Lambda function

including ABCC-EC policies with attribute-caching capability. The attribute-caching capability

enabled significant performance improvement in the results. Figure 6.12 shows the results with

the performance enhancement. The graph in the figure depicts only a few milliseconds difference

between the average time for Lambda without ABCC-EC and Lambda with ABCC-EC. In both

the results, the size of the message, i.e., the number of properties (attributes) in the message, do not

necessarily affect the performance since only some of these attributes were included in the ABCC-

EC policies. However, in experiments with several message attributes included in the policies,

there wasn’t a considerable difference in average device shadow update time.

133

• Discussion

The ABCC-EC model is demonstrated using a proof-of-concept implementation in this research.

The performance evaluation results in Figure 6.12 imply the feasibility of this approach in real-

world CE-IoT platforms. As future work, the proof-of-concept implementation could be developed

into a robust implementation framework that can meet the need of a rapidly growing domain, viz.

the IoT, to achieve the goal of deploying the ABCC-EC model in commercial CE-IoT architectures.

In this research, we utilized the enforcement architecture based on one of largest Cloud services

provider, AWS and its services, viz. AWS IoT, AWS Greengrass, and AWS Lambda function.

One of the relevant issues for wide-adoption of ABCC in real-world is scalability. With billions

of devices and their attributes, there is an inevitable need for an ABCC policy management tool

similar to the Policy Machine or XACML for ABAC, which will act as a service and provide

attribute-based communication control capabilities for different applications and platforms.

134

CHAPTER 7: CONCLUSION AND FUTURE WORK

This chapter summaries the contributions of this dissertation and presents potential future direc-

tions of research.

7.1 Summary

This dissertation makes fundamental contributions towards developing ABAC and ABCC models

for Cloud and CE-IoT architectures and promoting their application in real-world platforms. Ini-

tially, it focuses on the Cloud Computing domain where it develops a role-centric ABAC model,

the UAE-OSAC model, for OpenStack, an open source Cloud IaaS platform. Similarly, focusing

on the Cloud framework, it then develops a restricted HGABAC (rHGABAC) model. The major

objectives of developing these ABAC models is to exhibit the capabilities of ABAC and stimulate

their enforcement in the Cloud Computing domain utilizing existing ABAC policy specification

and enforcement tool, viz., the Policy Machine (PM), together with customized implementation of

the Authorization Engine (AE) developed in this research.

With the emergence of Cloud-Enabled IoT, this dissertation aims to address security and pri-

vacy issues in the CE-IoT domain. For this purpose, first, it studies AWS-IoT, a real-world instance

of CE-IoT, and develops an access control model for it, called AWS-IoTAC, based on AWS’s

policy-based approach. However, it proposes ABAC enhancements to the AWS-IoTAC model to

address dynamic and flexible access and authorization control requirements in CE-IoT. Then, it

focuses on the access and communication control needs and concerns in the CE-IoT domain and

relevant sub-domains (e.g., Wearable IoT (WIoT)). Inspired by a WIoT use case, it extends the

ACO architecture and categorizes various interactions (accesses and data exchanges) within the

enhanced ACO (EACO) into three access control models in the Access Control framework.

Finally, this dissertation recognizes the inevitable need of communication control models to en-

able secure data and information flow and enforce user-specific privacy policies in the CE-IoT ar-

chitectures. Thus, it introduces a new concept of Attribute-Based Communication Control (ABCC)

135

and presents a conceptual ABCC model along with the description of its characteristics and compo-

nents. In an edge computing enabled CE-IoT context, it develops an ABCC model for controlling

communication and data flow between edge network of things and Cloud. The implementation of

this model is presented in AWS and its IoT and edge computing service.

In summary, the technical approach adopted here is to study and develop attribute-based access

and communication control models to secure the Cloud and CE-IoT arena. To motivate the appli-

cation of these models in real-world scenarios, proof-of-concept implementations and feasibility

analysis of the models are presented in relevant areas.

7.2 Future Work

There are several potential directions which can be studied and explored as extensions to this

research. The ABAC and ABCC models developed in this dissertation could be enhanced with

additional capabilities (e.g., trust mechanisms) based on user and domain requirements. Moreover,

attribute-based is a simple and flexible approach and could be applied in other domains beyond

access and communication control models.

This dissertation focuses on access and communication control needs within a single Cloud

infrastructure. However, in the continuously broadening IoT space, multi-cloud infrastructures are

becoming a necessity to support IoT. The multi-cloud IoT architecture directly implies IoT federa-

tion and trust models in CE-IoT. The concept of multi-cloud may refer to different infrastructures,

such as multiple Clouds interacting with each other (e.g., AWS and OpenStack), multiple tenants

sharing data and information inside a Cloud (e.g., AWS tenants), or multiple cloudlets interact-

ing with each other within one Cloud or across multiple Clouds. The access and communication

control requirements are diverse in such dynamic environment since it involves several distributed

components. Therefore, further research on multi-cloud access and communication control models

in the IoT arena is a viable direction.

With the introduction of Attribute-Based Communication Control (ABCC) in this research,

there are various avenues to develop ABCC models further. There is a lack of knowledge and

136

literature on ABCC which need to be advanced with significant research on ABCC in different

contexts. The scope of ABCC models needs to investigated in specific IoT domains where confi-

dentiality and integrity of communication occurring between several components is critical. Some

of the relevant IoT domains are Battlefield IoT, Medical/Healthcare IoT, and Vehicular IoT.

137

BIBLIOGRAPHY

[1] Amazon Web Services (AWS). https://aws.amazon.com/. Accessed: 2016-11-10.

[2] AWS Greengrass Service. https://aws.amazon.com/greengrass/. Accessed: 01/08/2018.

[3] AWS IoT Platform. http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.

html. Accessed: 2017-01-08.

[4] AWS Lambda Service. https://aws.amazon.com/lambda/. Accessed: 01/08/2017.

[5] AWS Python SDK. https://github.com/aws/aws-iot-device-sdk-python. Accessed:

01/08/2017.

[6] AWS SDK for JavaScript in Node.js. https://aws.amazon.com/sdk-for-node-js/. Accessed:

2016-08-10.

[7] Azure IoT. https://azure.microsoft.com/en-us/overview/iot/. Accessed: 2017-01-15.

[8] Build Your Blueprint for the Internet of Things, Based on Five Architecture Styles. https://

www.gartner.com/doc/2854218/build-blueprint-internet-things-based. Accessed: 2017-01-

02.

[9] Fitness Trackers Could Benefit from Better Security. http://www.ed.ac.uk/news/2017/

fitness-trackers-could-benefit-from-better-securit. Accessed: 2017-09-15.

[10] Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, Up 31 Percent From

2016. https://www.gartner.com/newsroom/id/3598917. Accessed: 2017-03-15.

[11] Google Cloud Platform. https://cloud.google.com/. Accessed: 2016-12-10.

[12] Google Internet of Things. https://cloud.google.com/solutions/iot-overview/. Accessed:

2016-12-10.

138

https://aws.amazon.com/
https://aws.amazon.com/greengrass/
http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://aws.amazon.com/lambda/
https://github.com/aws/aws-iot-device-sdk-python
https://aws.amazon.com/sdk-for-node-js/
https://azure.microsoft.com/en-us/overview/iot/
https://www.gartner.com/doc/2854218/build-blueprint-internet-things-based
https://www.gartner.com/doc/2854218/build-blueprint-internet-things-based
http://www.ed.ac.uk/news/2017/fitness-trackers-could-benefit-from-better-securit
http://www.ed.ac.uk/news/2017/fitness-trackers-could-benefit-from-better-securit
https://www.gartner.com/newsroom/id/3598917
https://cloud.google.com/
https://cloud.google.com/solutions/iot-overview/

[13] Guard - Information Security. https://en.wikipedia.org/wiki/Guard_(information_security).

Accessed: 2018-06-02.

[14] Harmonia-1.5. https://github.com/PM-Master/Harmonia-1.5. Accessed: 2016-08-18.

[15] Harmonia-1.6. https://github.com/PM-Master/Harmonia-1.6. Accessed: 2017-01-18.

[16] Here’s How the Internet of Things (IoT) Will Change

Workplaces. http://www.insight.com/en_US/learn/content/2017/

02072017-heres-how-the-internet-of-things-iot-will-change-workplaces.html. Accessed:

2017-06-10.

[17] How The Internet of Things is Revolutionizing Manufacturing. http://www.businessinsider.

com/internet-of-things-in-manufacturing-2016-10. Accessed: 2017-08-04.

[18] IoT - Internet of Things. http://www.webopedia.com/TERM/I/internet_of_things.html. Ac-

cessed: 2017-01-04.

[19] IoT Device Categories Class 0,1,2. http://www.cisoplatform.com/profiles/blogs/

classification-of-iot-devices. Accessed: 2017-08-10.

[20] Living in the Cloud, Gateway or on the Edge: IoT‘s Fragmented Future. http://

www.wi-next.com/2015/03/living-cloud-gateway-edge-iots-fragmented-future/. Accessed:

2017-01-02.

[21] Microsoft Azure. https://azure.microsoft.com/en-us/. Accessed: 2016-11-28.

[22] MQTT.fx - A JavaFX based MQTT Client. http://www.mqttfx.org/. Accessed: 2016-09-10.

[23] Nymi Band. https://nymi.com/. Accessed: 2017-01-08.

[24] OpenStack. https://www.openstack.org/. Accessed: 2016-11-10.

[25] Policy Machine. http://csrc.nist.gov/pm/. Accessed: 2016-09-10.

139

https://en.wikipedia.org/wiki/Guard_(information_security)
https://github.com/PM-Master/Harmonia-1.5
https://github.com/PM-Master/Harmonia-1.6
http://www.insight.com/en_US/learn/content/2017/02072017-heres-how-the-internet-of-things-iot-will-change-workplaces.html
http://www.insight.com/en_US/learn/content/2017/02072017-heres-how-the-internet-of-things-iot-will-change-workplaces.html
http://www.businessinsider.com/internet-of-things-in-manufacturing-2016-10
http://www.businessinsider.com/internet-of-things-in-manufacturing-2016-10
http://www.webopedia.com/TERM/I/internet_of_things.html
http://www.cisoplatform.com/profiles/blogs/classification-of-iot-devices
http://www.cisoplatform.com/profiles/blogs/classification-of-iot-devices
http://www.wi-next.com/2015/03/living-cloud-gateway-edge-iots-fragmented-future/
http://www.wi-next.com/2015/03/living-cloud-gateway-edge-iots-fragmented-future/
https://azure.microsoft.com/en-us/
http://www.mqttfx.org/
https://nymi.com/
https://www.openstack.org/
http://csrc.nist.gov/pm/

[26] The Challenges of Wearable Electronics. http://www1.futureelectronics.com/

Mailing/etechs/TEConnectivity/etechALERT_TE_ConsumerWearables/Images/

WearablesWhitePaper_TE.pdf. Accessed: 2017-08-08.

[27] Top 6 Wearable Safety Devices. https://blog.cammy.com/top-wearable-safety-devices. Ac-

cessed: 2017-01-08.

[28] Transport Layer Security. https://tools.ietf.org/html/rfc5246. Accessed: 2017-08-10.

[29] Wearable Technologies. https://www.wearable-technologies.com/innovation-worldcup/

categories/. Accessed: 2017-08-15.

[30] What is AWS Greengrass? https://docs.aws.amazon.com/greengrass/latest/developerguide/

what-is-gg.html. Accessed: 01/08/2018.

[31] X.509 Certificates. http://searchsecurity.techtarget.com/definition/X509-certificate. Ac-

cessed: 2017-02-10.

[32] XACML. https://en.wikipedia.org/wiki/XACML. Accessed: 2016-10-10.

[33] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Moussa

Ayyash. Internet of things: A Survey on Enabling Technologies, Protocols, and Applica-

tions. IEEE Communications Surveys & Tutorials, 17(4):2347–2376, 2015.

[34] Mohammad A Al-Kahtani and Ravi Sandhu. A Model for Attribute-Based User-Role As-

signment. In Proceedings of 18th Annual Computer Security Applications Conference,

pages 353–362. IEEE, 2002.

[35] Asma Alshehri and Ravi Sandhu. Access Control Models for Cloud-Enabled Internet of

Things: A Proposed Architecture and Research Agenda. In International Conference on

Collaboration and Internet Computing (CIC), pages 530–538, 2016.

140

http://www1.futureelectronics.com/Mailing/etechs/TEConnectivity/etechALERT_TE_ConsumerWearables/Images/WearablesWhitePaper_TE.pdf
http://www1.futureelectronics.com/Mailing/etechs/TEConnectivity/etechALERT_TE_ConsumerWearables/Images/WearablesWhitePaper_TE.pdf
http://www1.futureelectronics.com/Mailing/etechs/TEConnectivity/etechALERT_TE_ConsumerWearables/Images/WearablesWhitePaper_TE.pdf
https://blog.cammy.com/top-wearable-safety-devices
https://tools.ietf.org/html/rfc5246
https://www.wearable-technologies.com/innovation-worldcup/categories/
https://www.wearable-technologies.com/innovation-worldcup/categories/
https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
http://searchsecurity.techtarget.com/definition/X509-certificate
https://en.wikipedia.org/wiki/XACML

[36] Asma Alshehri and Ravi Sandhu. Access Control Models for Virtual Object Communication

in Cloud-Enabled IoT. In International Conference on Information Reuse and Integration

(IRI), pages 16–25. IEEE, 2017.

[37] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A Survey.

Computer Networks, 54(15):2787–2805, 2010.

[38] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. An Atribute-Based Access Control Extension

for OpenStack and its Enforcement Utilizing the Policy Machine. In 2nd International

Conference on Collaboration and Internet Computing (CIC), pages 37–45. IEEE, 2016.

[39] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. ABAC with Group Attributes and Attribute

Hierarchies Utilizing the Policy Machine. In Proceedings of the 2nd ACM Workshop on

Attribute-Based Access Control, pages 17–28. ACM, 2017.

[40] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. Access Control Model for AWS Internet

of Things. In International Conference on Network and System Security, pages 721–736.

Springer, 2017.

[41] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. An Access Control Framework for Cloud-

Enabled Wearable Internet of Things. In 3rd International Conference on Collaboration

and Internet Computing (CIC), pages 328–338. IEEE, 2017.

[42] Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. A Comparison of Logical-formula and

Enumerated Authorization Policy ABAC Models. In IFIP Annual Conference on Data and

Applications Security and Privacy, pages 122–129. Springer, 2016.

[43] Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. Label-Based Access Control: An

ABAC Model with Enumerated Authorization Policy. In Proceedings of the ACM Inter-

national Workshop on Attribute-Based Access Control, pages 1–12. ACM, 2016.

141

[44] Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescapé. On the Integration

of Cloud Computing and Internet of Things. In International Conference on Future Internet

of Things and Cloud (FiCloud), pages 23–30. IEEE, 2014.

[45] Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé. Integration of

Cloud Computing and Internet of Things: A Survey. Future Generation Computer Systems,

56:684–700, 2016.

[46] David W Chadwick, Kristy Siu, Craig Lee, Yann Fouillat, and Damien Germonville. Adding

Federated Identity Management to OpenStack. Journal of Grid Computing, 12(1):3–27,

2014.

[47] Luis Cruz-Piris, Diego Rivera, German Lopez-Civera, Enrique De la Hoz, Ivan Marsa-

Maestre, and Juan R Velasco. Protecting Sensors in an IoT Environment by Modelling

Communications as Resources. Multidisciplinary Digital Publishing Institute Proceedings,

1(8):801, 2017.

[48] Luis Cruz-Piris, Diego Rivera, Ivan Marsa-Maestre, Enrique de la Hoz, and Juan R Velasco.

Access Control Mechanism for IoT Environments Based on Modelling Communication Pro-

cedures as Resources. Sensors, 18(3):917, 2018.

[49] Li Da Xu, Wu He, and Shancang Li. Internet of Things in Industries: A Survey. IEEE

Transactions on Industrial Informatics, 10(4):2233–2243, 2014.

[50] Angelika Dohr, Robert Modre-Opsrian, Mario Drobics, Dieter Hayn, and Günter Schreier.

The Internet of Things for Ambient Assisted Living. In Seventh International Conference

on Information Technology: New Generations (ITNG), pages 804–809. IEEE, 2010.

[51] David Ferraiolo, Vijayalakshmi Atluri, and Serban Gavrila. The Policy Machine: A Novel

Architecture and Framework for Access Control Policy Specification and Enforcement.

Journal of Systems Architecture, 57(4):412–424, 2011.

142

[52] David Ferraiolo, Serban Gavrila, and Wayne Jansen. Policy Machine: Features, Architec-

ture, and Specification. National Institute of Standards and Technology Internal Report

7987, 2014.

[53] David F Ferraiolo, Larry Feldman, and Gregory A Witte. Exploring the Next Generation of

Access Control Methodologies. Technical report, 2016.

[54] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy Chan-

dramouli. Proposed NIST Standard for Role-Based Access Control. ACM Transactions on

Information and System Security (TISSEC), 4(3):224–274, 2001.

[55] Ludwig Fuchs, Günther Pernul, and Ravi Sandhu. Roles in Information Security–A Survey

and Classification of the Research Area. Computers & Security, 30(8):748–769, 2011.

[56] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-Based Encryption

for Fine-Grained Access Control of Encrypted Data. In Proceedings of the 13th ACM Con-

ference on Computer and Communications Security, pages 89–98. ACM, 2006.

[57] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. In-

ternet of Things (IoT): A Vision, Architectural Elements, and Future Directions. Future

Generation Computer Systems, 29(7):1645–1660, 2013.

[58] Maanak Gupta and Ravi Sandhu. The GURA_G Administrative Model for User and Group

Attribute Assignment. In International Conference on Network and System Security, pages

318–332. Springer, 2016.

[59] Sergio Gusmeroli, Salvatore Piccione, and Domenico Rotondi. A Capability-Based Security

Approach to Manage Access Control in the Internet of Things. Mathematical and Computer

Modelling, 58(5):1189–1205, 2013.

[60] Michael Hanspach and Jorg Keller. In Guards We Trust: Security and Privacy in Operating

Systems Revisited. In International Conference on Social Computing (SocialCom), 2013,

pages 578–585. IEEE, 2013.

143

[61] José L Hernández-Ramos, Antonio J Jara, Leandro Marin, and Antonio F Skarmeta. Dis-

tributed Capability-Based Access Control for the Internet of Things. Journal of Internet

Services and Information Security (JISIS), 3(3/4):1–16, 2013.

[62] Shivayogi Hiremath, Geng Yang, and Kunal Mankodiya. Wearable Internet of Things: Con-

cept, Architectural Components and Promises for Person-Centered Healthcare. In EAI 4th

International Conference on Wireless Mobile Communication and Healthcare (Mobihealth),

pages 304–307. IEEE, 2014.

[63] Vincent C Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin, Robert

Miller, and Karen Scarfone. Guide to Attribute Based Access Control (ABAC) Definition

and Considerations. NIST Special Publication 800-162, 2014.

[64] Vincent C Hu, D Richard Kuhn, and David F Ferraiolo. Attribute-Based Access Control.

IEEE Computer, 48(2):85–88, 2015.

[65] Junbeom Hur and Dong Kun Noh. Attribute-Based Access Control with Efficient Revoca-

tion in Data Outsourcing Systems. IEEE Transactions on Parallel and Distributed Systems,

22(7):1214–1221, 2011.

[66] SM Riazul Islam, Daehan Kwak, MD Humaun Kabir, Mahmud Hossain, and Kyung-Sup

Kwak. The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access,

3:678–708, 2015.

[67] Xin Jin, Ram Krishnan, and Ravi Sandhu. A Unified Attribute-Based Access Control Model

Covering DAC, MAC and RBAC. In IFIP Annual Conference on Data and Applications

Security and Privacy, pages 41–55. Springer, 2012.

[68] Xin Jin, Ram Krishnan, and Ravi Sandhu. Role and Attribute Based Collaborative Admin-

istration of Intra-Tenant Cloud IaaS. In International Conference on Collaborative Comput-

ing: Networking, Applications and Worksharing (CollaborateCom), pages 261–274. IEEE,

2014.

144

[69] Xin Jin, Ravi Sandhu, and Ram Krishnan. RABAC: Role-Centric Attribute-Based Access

Control. In International Conference on Mathematical Methods, Models, and Architectures

for Computer Network Security, pages 84–96. Springer, 2012.

[70] VJ Jincy and Sudharsan Sundararajan. Classification Mechanism for IoT Devices Towards

Creating A Security Framework. In Intelligent Distributed Computing, pages 265–277.

Springer, 2015.

[71] Sun Kaiwen and Yin Lihua. Attribute-Role-Based Hybrid Access Control in the Internet of

Things. In Asia-Pacific Web Conference, pages 333–343. Springer, 2014.

[72] Rafiullah Khan, Sarmad Ullah Khan, Rifaqat Zaheer, and Shahid Khan. Future Internet:

The Internet of Things Architecture, Possible Applications and Key Challenges. In 10th

International Conference on Frontiers of Information Technology (FIT), pages 257–260.

IEEE, 2012.

[73] Konstantinos Kotis and Artem Katasonov. An IoT-Ontology for The Representation of

Interconnected, Clustered and Aligned Smart Entities. Technical report, VTT Technical

Research Center, Finland, 2012.

[74] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. Adding Attributes to Role-Based

Access Control. IEEE Computer, 43(6):79–81, 2010.

[75] Craig A Lee and Nehal Desai. Approaches for Virtual Organization Support in OpenStack.

In International Conference on Cloud Engineering (IC2E), pages 432–438. IEEE, 2014.

[76] Jin Li, Qian Wang, Cong Wang, and Kui Ren. Enhancing Attribute-Based Encryption with

Attribute Hierarchy. Mobile Networks and Applications, 16(5):553–561, 2011.

[77] Jing Liu, Yang Xiao, and CL Philip Chen. Authentication and Access Control in the Internet

of Things. In 32nd International Conference on Distributed Computing Systems Workshops

(ICDCSW), pages 588–592. IEEE, 2012.

145

[78] Parikshit N Mahalle, Bayu Anggorojati, Neeli Rashmi Prasad, and Ramjee Prasad. Iden-

tity Establishment and Capability Based Access Control (IECAC) Scheme for Internet of

Things. In 15th Symposium on Wireless Personal Multimedia Communications (WPMC),

pages 187–191. IEEE, 2012.

[79] Wu Miao, T LU, F LING, et al. Research on the Architecture of Internet of Things [C].

In Proceedings of the 3rd International Conference on Advanced Computer Theory and

Engineering: August, pages 20–22. sn, 2010.

[80] Jiwan Ninglekhu and Ram Krishnan. AARBAC: Attribute-Based Administration of Role-

based Access Control. In 3rd International Conference on Collaboration and Internet Com-

puting (CIC), pages 126–135. IEEE, 2017.

[81] Jiwan Ninglekhu and Ram Krishnan. Attribute Based Administration of Role Based Access

Control: A Detail Description. arXiv preprint arXiv:1706.03171, 2017.

[82] Michele Nitti, Virginia Pilloni, Giuseppe Colistra, and Luigi Atzori. The Virtual Object as

A Major Element of The Internet of Things: A Survey. IEEE Communications Surveys &

Tutorials, 18(2):1228–1240, 2016.

[83] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-Based Encryption with Non-

Monotonic Access Structures. In Proceedings of the 14th ACM Conference on Computer

and Communications Security, pages 195–203. ACM, 2007.

[84] Aafaf Ouaddah, Hajar Mousannif, Anas Abou Elkalam, and Abdellah Ait Ouahman. Ac-

cess Control in The Internet of Things: Big Challenges and New Opportunities. Computer

Networks, 112:237–262, 2017.

[85] Pritee Parwekar. From Internet of Things Towards Cloud of Things. In 2nd International

Conference on Computer and Communication Technology (ICCCT), pages 329–333. IEEE,

2011.

146

[86] Pawani Porambage, Mika Ylianttila, Corinna Schmitt, Pardeep Kumar, Andrei Gurtov, and

Athanasios V Vasilakos. The Quest for Privacy in the Internet of Things. IEEE Cloud

Computing, 3(2):36–45, 2016.

[87] Torsten Priebe, Wolfgang Dobmeier, and Nora Kamprath. Supporting Attribute-Based Ac-

cess Control with Ontologies. In First International Conference on Availability, Reliability

and Security (ARES’06), pages 8–pp. IEEE, 2006.

[88] Navid Pustchi and Ravi Sandhu. MT-ABAC: A Multi-Tenant Attribute-Based Access Con-

trol Model with Tenant Trust. In International Conference on Network and System Security,

pages 206–220. Springer, 2015.

[89] Qasim Mahmood Rajpoot, Christian Damsgaard Jensen, and Ram Krishnan. Integrating

Attributes Into Role-Based Access Control. In IFIP Annual Conference on Data and Appli-

cations Security and Privacy, pages 242–249. Springer, 2015.

[90] BB Prahlada Rao, Paval Saluia, Neetu Sharma, Ankit Mittal, and Shivay Veer Sharma.

Cloud Computing for Internet of Things & Sensing Based Applications. In Sixth Interna-

tional Conference on Sensing Technology (ICST), pages 374–380. IEEE, 2012.

[91] Rodrigo Roman, Jianying Zhou, and Javier Lopez. On the Features and Challenges of

Security and Privacy in Distributed Internet of Things. Computer Networks, 57(10):2266–

2279, 2013.

[92] Ravi Sandhu. Role-Based Access Control. Advances in Computers, 46:237–286, 1998.

[93] Ravi Sandhu, Edward J Coyne, Hal Feinstein, and Charles Youman. Role-Based Access

Control Models. IEEE Computer, 29(2):38–47, 1996.

[94] Ravi S Sandhu and Pierangela Samarati. Access Control: Principle and Practice. IEEE

Communications Magazine, 32(9):40–48, 1994.

147

[95] Mahadev Satyanarayanan. The Emergence of Edge Computing. Computer, 50(1):30–39,

2017.

[96] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The Case for

VM-based Cloudlets in Mobile Computing. IEEE Pervasive Computing, 8(4):14–23, 2009.

[97] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolfgang Richter, and Pad-

manabhan Pillai. Cloudlets: At the Leading Edge of Mobile-Cloud Convergence. In 6th

International Conference on Mobile Computing, Applications and Services (MobiCASE),

pages 1–9. IEEE, 2014.

[98] Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiry-

ong Ha, Wenlu Hu, and Brandon Amos. Edge Analytics in the Internet of Things. IEEE

Pervasive Computing, 14(2):24–31, 2015.

[99] Hans Schaffers, Nicos Komninos, Marc Pallot, Brigitte Trousse, Michael Nilsson, and Al-

varo Oliveira. Smart Cities and The Future Internet: Towards Cooperation Frameworks for

Open Innovation. The Future Internet, pages 431–446, 2011.

[100] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. OpenStack: Toward an Open-

Source Solution for Cloud Computing. International Journal of Computer Applications,

55(3), 2012.

[101] Daniel Servos and Sylvia L Osborn. HGABAC: Towards a Formal Model of Hierarchical

Attribute-Based Access Control. In International Symposium on Foundations and Practice

of Security, pages 187–204. Springer, 2014.

[102] Pallavi Sethi and Smruti R Sarangi. Internet of Things: Architectures, Protocols, and Ap-

plications. Journal of Electrical and Computer Engineering, 2017.

[103] Hai-bo Shen and Fan Hong. An Attribute-Based Access Control Model for Web Services.

In Seventh International Conference on Parallel and Distributed Computing, Applications

and Technologies (PDCAT’06), pages 74–79. IEEE, 2006.

148

[104] George Suciu, Alexandru Vulpe, Simona Halunga, Octavian Fratu, Gyorgy Todoran, and

Victor Suciu. Smart Cities Built on Resilient Cloud Computing and Secure Internet of

Things. In 19th International Conference on Control Systems and Computer Science

(CSCS), pages 513–518. IEEE, 2013.

[105] Bo Tang and Ravi Sandhu. Extending OpenStack Access Control with Domain Trust. In

International Conference on Network and System Security, pages 54–69. Springer, 2014.

[106] Panagiotis Vlacheas, Raffaele Giaffreda, Vera Stavroulaki, Dimitris Kelaidonis, Vassilis

Foteinos, George Poulios, Panagiotis Demestichas, Andrey Somov, Abdur Rahim Biswas,

and Klaus Moessner. Enabling Smart Cities Through a Cognitive Management Framework

for The Internet of Things. IEEE Communications Magazine, 51(6):102–111, 2013.

[107] Jeffrey Voas. Networks of ’Things’. NIST Special Publication, 800(183):800–183, 2016.

[108] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. A Logic-Based Framework for

Attribute Based Access Control. In Proceedings of the ACM Workshop on Formal Methods

in Security Engineering, pages 45–55. ACM, 2004.

[109] Evan Welbourne, Leilani Battle, Garrett Cole, Kayla Gould, Kyle Rector, Samuel Raymer,

Magdalena Balazinska, and Gaetano Borriello. Building The Internet of Things Using

RFID: The RFID Ecosystem Experience. IEEE Internet Computing, 13(3), 2009.

[110] Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun, and Hui-Ying Du. Research on The Ar-

chitecture of Internet of Things. In 3rd International Conference on Advanced Computer

Theory and Engineering (ICACTE), volume 5, pages V5–484. IEEE, 2010.

[111] Zhihong Yang, Yingzhao Yue, Yu Yang, Yufeng Peng, Xiaobo Wang, and Wenji Liu. Study

and Application on The Architecture and Key Technologies for IoT. In International Con-

ference on Multimedia Technology (ICMT), pages 747–751. IEEE, 2011.

[112] Eric Yuan and Jin Tong. Attributed Based Access Control (ABAC) for Web Services. In

IEEE International Conference on Web Services (ICWS’05). IEEE, 2005.

149

[113] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele Zorzi.

Internet of Things for Smart Cities. IEEE Internet of Things Journal, 1(1):22–32, 2014.

[114] Guoping Zhang and Jiazheng Tian. An Extended Role Based Access Control Model for the

Internet of Things. In International Conference on Information Networking and Automation

(ICINA), volume 1, pages V1–319. IEEE, 2010.

[115] Yun Zhang, Farhan Patwa, and Ravi Sandhu. Community-Based Secure Information and

Resource Sharing in AWS Public Cloud. In International Conference on Collaboration and

Internet Computing (CIC), pages 46–53. IEEE, 2015.

[116] Yun Zhang, Farhan Patwa, Ravi Sandhu, and Bo Tang. Hierarchical Secure Information

and Resource Sharing in OpenStack Community Cloud. In International Conference on

Information Reuse and Integration (IRI), pages 419–426. IEEE, 2015.

150

VITA

Smriti Bhatt grew up in Mahendranagar, Nepal. She earned a Bachelor of Engineering (B.E.) in

Computer Engineering from Kathmandu University, Dhulikhel, Nepal in 2011. After completing

her engineering, she worked for two years as a Software Engineer in Nepal at Verisk Information

Technologies, a subsidiary of Verisk Analytics. In Fall 2013, Smriti started pursuing her doctoral

degree at University of Texas at San Antonio. She joined the Institute for Cyber Security (ICS),

Department of Computer Science, UTSA in 2015 and started doing research under the supervision

of Dr. Ravi Sandhu. She has received her Masters in Computer Science (M.S.) with a concentration

in Computer and Information Security from UTSA. Her research area is Cloud and Internet of

Things Security mainly focused on Attribute-Based Access and Communication Control models

and their application in different domains within the context of Cloud Computing and Cloud-

Enabled IoT.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Motivation
	Problem Statement
	Thesis Statement

	Scope and Assumption
	Summary of Contributions
	Organization of the Dissertation

	Chapter 2: Background
	Attribute-Based Access Control (ABAC)
	HGABAC Model

	OpenStack
	OpenStack Access Control (OSAC) Model

	The Policy Machine
	AWS Access Control (AWSAC) Model
	ACO Architecture

	Chapter 3: ABAC Models and Enforcement for Cloud IaaS Utilizing the Policy Machine
	User-Attribute Enhanced OSAC (UAE-OSAC) Model
	UAE-OSAC: Motivation
	UAE-OSAC: Model and Definitions
	Enforcement Utilizing the Policy Machine and Authorization Engine

	Restricted HGABAC (rHGABAC) Model
	rHGABAC: Motivation
	rHGABAC: Model and Definitions
	Enforcement Utilizing the Policy Machine and Authorization Engine

	Related Work

	Chapter 4: ABAC for AWS Internet of Things
	AWS IoT Access Control (AWS-IoTAC) Model
	AWS-IoTAC: Motivation
	AWS-IoTAC: Model and Definitions
	AWS-IoTAC Mapping in ACO Architecture

	A Smart Home Use Case in AWS IoT
	Use Case Setup and Configuration
	Use Case Scenarios

	ABAC Enhancements to the AWS-IoTAC Model
	Attributes in AWS IoT
	ABAC Enhancements for AWS-IoTAC

	Related Work

	Chapter 5: Enhanced ACO Architecture for Cloud-Enabled Internet of Things (CE-IoT)
	Internet of Things – Devices and Application Domains
	A General Classification of IoT Devices
	IoT Application Domains

	Wearable Internet of Things (WIoT)
	WIoT Devices and Application Domains

	Enhanced ACO (EACO) Architecture
	Access Control (AC) Framework for EACO
	Access Control Models

	Remote Health and Fitness Monitoring Use Case
	Proposed Enforcement in AWS IoT

	Objectives of AC Framework

	Chapter 6: Attribute-Based Communication Control for CE-IoT
	Attribute-Based Communication Control (ABCC)
	A Conceptual Model of ABCC
	ABAC vs. ABCC

	ABCC for Edge and Cloud Communication (ABCC-EC)
	ABCC-EC: Motivation
	ABCC-EC: Model and Definitions
	Use Case
	Implementation
	Performance Evaluation

	Chapter 7: Conclusion and Future Work
	Summary
	Future Work

	Bibliography
	Vita

